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INTRODUCTION

By Tiarrma C. KooPMANS

The eontributions to this book are devoted, directly or indirectly, to
various aspects of a fundamental problem of normative economics: the
best allocation of limited means toward desired ends. The central place
of this problem in economic thought explains what otherwise might
seem like a surprising fact: that the studies here assembled bring out
affinities and connections between lines of thought and funds of experi-
ence developed in apparent independence by various groups of econo-
mists, mathematicians, and administrators. The volume thus testifies
to the fundamental unity of the economic problem, even though the
approaches and points of view may vary widely. An introduction to it
should start by indicating some of the currents of thought here converg-
ing and interacting.

A specific historical origin of the work in this volume is found in dis-
cussions among Austrian and German economiste in the thirties on
generalizations of the Walrasian equation systems of mathematical
economics. Neisser [1932] and von Stackelberg [1933] raised questions
of existence and uniqueness of a solution to Cassel’s formulation of the
Walrasian system, with reference in particular to the requirement that
prices and rates of production be represented by nonnegative numbers,
In a mathematical seminar conducted in Vienna by Karl Menger,
Schlesinger [1935] formulated a suggestion, made also by Zeuthen [1933],
that economic theory should explain not only the nonnegative prices
and quantities produced of scarce goods but also which goods are scarce
and which are free (ie., have a zero price). Wald [1935, 1936a, b]
proved the existence and uniqueness of a solution to an equation system
expressing this problem. His discussion concerned a static model of
production in which each commodity in demand can be produced in
one way (a given amount of production requiring the input of propor-
tional amounts of primary factors of production). He assumed that
the total availabilities of primary factors are given by nature and that
there is a given static structure of demand (demand functions satisfy-
ing a monotonicity condition).

In a later contribution to the same semlnar, von Neumann [1937,
1945) generalized this model of production in several directions. He in-
troduced alternative methods of producing given commodities singly or

1



2 T. C. KOOPMANS

jointly, each method again involving fixed technological coefficients (ra~
tios between inputs and outputs). Thus he derived not only which
goods are free but alse which productive activities (methods) go un-
used. Also, a commodity could appear simultaneously as input of one
activity and as output of another. This circularity idea was extended
even to goods demanded by consumers, through the somewhat foreed
concept of an activity producing labor by the absorption of consump-
tion goods in fixed proportions. The model thus became a closed one,
with no inflow of primary factors from outside or outflow of final prod-
ucts out of the system considered. Any nonconsumed “surplus” was
assumed to be used for capital formation to obtain a continuous propor-
tional expansion of all productive activities under unchanging technol-
ogy. VYon Neumann’s model is therefore dynamie in the limited sense
that change over time is described by one scalar coefficient of yniform
expansion.!

Like Wald, von Neumann treated prices (including an interest rate)
as determined in compefitive markets so as to satisfy a zero profit con-
dition on all activities engaged in. He further excluded positive profits
on unused activities. Although his main concern was still with the ex-
istence of a solution (i.e., a set of nonnegative prices and activity levels
meeting these conditions), the important observation was made at the
end of the article that any such solution achieves efliciency of allocation
in the sense of a maximum rate of expansion of production compatible
with the given technology of production and consumption. This rate of
expansion is uniquely determined by the technological coefficients, but
there may be more than one solution achieving it.

We have dwelt on these discussions in some detail becavse even among
mathematical economists their value seems to have been insufficiently
realized. The second source of inspiration for the present studies, al-
though still largely in the realm of abstract theory, is part of the com-
mon fund of ideas of “literary” and “mathematical’” economics. This
is the theory of welfare economics, particularly in its application to pro-
duction. Bergson’s {1938] concept of an “‘economic welfare funetion,”
employed also by Lange [1942) under the name “social value funetion,”
recurs in Dantzig’s “objective function” {II], in a context where the
distributional problem concerning individual welfare levels recedes to
the background. Similar use is made of the idea underlying Pareto’s
“weak welfare principle” [Pareto, 1909, Chapter VI, Section 33], which
regards a situation as maximal from the welfare point of view if no tech-
nologically possible reallocation or redistribution of commodities can in-

1 The idea of a linear model deseribing an economy expanding at a constant rate
is also contained in an earlier study by Leontief [1928].



INTRODGCTION 3

crease somebody’s welfare without decreasing someone else’s welfare.
Through the studies of Barone [1935], Bergson [1938], Hicks [1939],
Hoteling [1938], Kaldor [1939], Lange [1942], Lerner {1944], and others,?
this principle became the basis of what is known as the “new welfare
economics.” It is here applied by Koopmans [III}, Georgescu-Roegen
[IV], S8amuelson {VII], and others to productive efficiency problems by
substituting the outputs of desired commodities for individual welfare
levels in the foregoing formulation.

Particular use is made of those discussions in welfare economics
(opened by a challenge of L. von Mises {1922, 1935]) that dealt with
the possibility of economic calculation in a socialist society. The no-
tion of prices as constituting the information that should circulate be-
tween centers of decision to make consistent allocation possible emerged
from the discussions by Lange [1938], Lerner [1944], and others. The
underlying idea of the models of allocation constructed by them is that
the comparison of the benefits from alternative uses of each good, where
not secured by competitive market situations, can be built into the ad-
ministrative processes that decide the allocation of that good. This
suggestion is relevant, not only to the problems of a socialist economy,
but also to the allocation problems of the many sectors of capitalist or
mixed economies where competitive markets do not penetrate.

The third source of ideas is the work on interindustry relationships,
initiated, developed, and stimulated largely by Leontief [1936; 1937;
1941; 1944; 1946a, b; 1948a, b; 1949] and given statistical expression by
measurements and tabulations produced by the Bureau of Labor Sta-
tistics. One of the purposes of this work has been to provide an empiri-
cal basis for numerical estimation of the effects, on the levels of activity
in individual industries, of given changes in the composition of final de-
mand by industries supplying final goods. The theoretical concepts un-
derlying this work have been adapted to the purpose of answering broad
quantitative policy questions from an analysis of observable variables
of a more or less aggregative type. The operations of an industry were
regarded as one activity, and homogeneity of productive operations
within an industry was aimed for by as detailed an industrial classifiea-
tion as was permitted by available data and computation methods and
equipment. The method of measurement of input-output coefficients
that has been used most extensively is the observation of the money
value of all goods and services delivered by each industry to each other
industry in a census year. This method, which precludes the separate
measurement of alternative processes to produce the same commodity,
or the recognition of joint production, can be and is being supplemented

t For further references, see, for instance, Samuelson [1948, Chapter VIII].



4 T, ¢. KOOPMANS

by the study of engineering information, which is not subiect to these
limitations. Substitution possibilities have not been explicitly intro-
duced in his models by Leontief but are not incompatible with them,
as will be explained further below. Present work by Leontief and his
collaborators is directed to the dynamic generalization of the static
models so far developed.

The fourth source of inspiration has been the study of equally prac-
tical but more detailed, less aggregative, allocation and programming
problems that arose particularly in the organization of defense or the
conduct of war. The most comprehensive work in this category has
been the development of programming models by George B. Dantzig
and other members of a group of officials of the U. 8. Department of
the Air Force, under the direction of Marshall K. Wood. Several re-
ports on this work are contained in the present volume [I, II, XII,
XII, XXI, XX, The models of this group were developed to deal
both with the dynamic aspects of scheduling the interdependent activi-
ties of a large organization and with the choice of a best combination of
activities toward the achievement of a stated objective. Although in
practical elaboration the dynamic features have so far received prece-
dence, the conceptual structure of the models also invites the compara-
tive study of alternative ends attainable with given means.

In the same “detailed practical” category is work by Koopmans [1947]
on a static model of transportation developed, in ignorance of an earlier
study by Hitchcock [1941], under the stimulation of statistical work for
the Comhined Shipping Adjustment Board, the British-American board
dealing with merchant shipping problems during the second world war.

There is, of course, no exclusive connection between defense or war
and the systematic study of allocation and programming problems. It
is believed that the studies assembled in this volume are of equal rele-
vance to problems of industrial management and efficiency in produc-
tion scheduling. They also throw new light on old problems of abstract
economic theory. If the apparent prominence of military application at
this stage is more than a historical accident, the reasons are sociological
rather than logical. It does seem that governmental agencies, for what-
ever reason, have so far provided a better environment and more sym-
pathetic support for the systematic study, abstract and applied, of prin-
ciples and methods of allocation of resources than private industry.
There has also been more mobility of scientific personnel between gov-
ernment and universities, to the advantage of both.

The foregoing references to the main currents of thought that have
inspired the present studies may already have helped to characterize
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the intent of this volume. The immediate occasion for it is to report
on a conference on “linear programming,” held in Chicago at the Cowles
Commission for Research in Economics on June 20-24, 1949. In this
conference, scientists classifiable as economists, mathematicians, statis-
ticians, administrators, or combinations thereof, pooled their knowl-
edge, experience, and points of view to discuss the theory and practice
of efficient utilization of resources. The mathematicians brought new
tools of analysis essential to the progress of economics. The administra-
tors introduced an element of closeness to actual operations and deci-
siong not otherwige attainable. Those speaking as statisticians adduced
data and discussed their limitations. The economists contributed an
awareness of the variety of institutional arrangements that may be
utilized to achieve efficient allocation. '

The present volume contains the majority of the papers presented to
the conference. A list of contributors to this volume, a list of papers
presented in the conference but not reproduced, and a list of partici-
pants in the conference who did not formally present papers are given
on pages vii-ix. A number of papers [III, IV, V, IX, XI, XIII, XIV,
XX, XXIII} were rewritten and substantially extended after the con-
ference, either because only an abstract was prepared for the conference
or because additional material was found to be essential for a well-
rounded presentation. Two mathematical papers [XVII, XVIII] were
added. Other papers have undergone some revision or extension [II,
VII, XX, XXII] or were abstracted [X, XVI, XXIV] because of plans

_for fuller publication elsewhere. The remaining papers [I, VI, VIII,
XII, XV, XXV] are reproduced essentially as presented to the confer-
ence. Of the articles in the volume, the first two are reprinted, with
minor [I] or more extensive [II] revisions, from Economelrica, Vol. 17,
1949. All other contributions appear here for the first time in print.

The name of the conference topic, “linear programming,” requires ex-
planation. In earlier phases of the work reported on in this volume,
contacts and exchanges of ideas among its authors were stimulated by
a common interest in the forma! problem of maximization of a linear
function of variables subject to linear inequalities. The term *“linear
programming” became a convenient designation for the class of alloca-
tion or programming problems which give rise to that maximization
problem. The different title of this volume is intended to convey that
the work has in part already outgrown the designation and may be ex-
pected to outgrow it further.

The term “linear’ still applies to all the models discussed here. But
to carry that term at the masthead would immpede an understanding of
the true intent of the work by emphasizing its present limitations.
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Moreover, because of a semantic difficulty, its use would tend to over-
state those Hmitations. To many economists the term linearity is asso-
clated with narrowness, restrictiveness, and inflexibility of hypotheses.
We cannot pass such judgment until it is specified where the linearity
‘assumption is made. In this book the adjective in “linear model” re-
lates only to (a) the assumption of proporticnality of inputs and out-
puts in each elementary productive activity, and (b) the assumption
that the result of stmultaneously carrying out two or more activities is
the sum of the results of the separate activities. In terms more familiar
. to the economist, these assumptions imply constant returns to scale in
all parts of the technology. They do not imply linearity of the produc-
tion funetion, only its homogeneity of degree one. Curvilinear produe-
tion functions with that property, and with the continuity of derivatives
suggested by the appealing smoothness of texthook diagrams, can be
obtained from the models here studied by admitting an infinite set of
elementary activities. The limitation to a finite basis of activities in
most of the present contributions is a matter of mathematical conven-
ience and is of little economic consequence. As long as the homoge-
neity assumption is satisfied, the “polyhedral” production functions de-
rived from a finite basis permit any desired degree of approximation in
all applications and constitute a gain in realism in many. In particu-
lar, the production functions so obtained fully express the phenomenon
of decreasing returns to proportional increases in the inputs of some but
not all primary factors of production.

Neither should the assumption of constant returns to scale, made
throughout this volume, be regarded as essential to the method of ap-
proach it illustrates, although new mathematical problems would have
to be faced in the attempt to go beyond this assumption. More essen-
tial to the present approach iz the introduction of the method of pro-
duction, the elementary activity, the conceptual atom of technology,
into the basic postulates of the analysis. The problem of efficient pro-
duction then becomes one of finding the proper rules for combining these
building blocks. The term “activity analysis’ in the title of this book
is designed to express this approach.

In going down to idealized technological fundamentals in this way, a
new freedom is won in the specification of institutional assumptions.
These can be left blank in an abstract study of the criteria of efficient
allocation. Alternatively, a centralized direction of allocative decisions
can be specified. The term “programming”’ suggests the latter institu-
tional setting, emphasizing in particular the problems involved in the
time sequence of productive activities. However, it is also possible to
specify decentralized decision making, through a market mechanism or
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through administrative communication. It seems, therefore, that the
term “allocation” as the economist uses it is more suited to the variety
of possible institutional arrangements envisaged, it being understood
that this term includes the problem of best time sequence of activities.

Where so many diverse minds are at work on a problem area of com-
mon inferest, a certain amount of overlapping in content between their
contributions is inevitable and, indeed, wholesome. In order to pre-
serve the diversity in points of view and methods of approach, editorial
processes have left authors with considerable freedom to restate or en-~
large other authors’ results in their own terminology or context. Like-
wise, authors have chosen their own notations, subject only to mild edi-
torial persuasion where differences in notation might place hardships on
the reader.

It may be useful to give brief comments on individual articles in the
book in order to help the reader find his way rather than to attempt a
characterization of the various contributions, which ean be left to speak
for themselves. Therefore comments are apportioned only on the basis
of the desirability of introductory explanations.

The four parts of the book follow the natural order of theory, appli-
cation, and tools, the latter subdivided into mathematical tools and com-
putational procedures. Those who find the theory somewhat abstruse
may prefer to start their reading with some of the applications given
in Part Two, in which the subject matter is more concrete and the style
more expository. _

The opening chapter of Part One discusses the allocation problem
from the point of view of an organization in which a high degree of cen-
tralization ih decision making is a strong tradition and in all likelihood
a nearly as strong necessity. To von Mises’ arguments [1922, 1935] re-
garding the unmanageability of the computation problems of central-
ized allocation, the authors oppose the new possibilities opened by mod-
ern electronic computing equipment. In Chapter 11 a model is devel-
oped to guide the study of this allocation problem. Dantzig's model,
initially conceived independently of von Neumann’'s model already dis-
cussed, is similar to it in allowing commodities to be inputs as well as
outputs, in introducing alternative ways of achieving the same ends,
and in choosing stocks-at-end-of-period rather than flows-during-period
as the output variables. It is, however, more truly dynamic in that it
permits change over time in the relative amounts of various activities
in order most efficiently to achieve a stated objective. Dantzig’s model
is an abstract allocation model that does not depend on the concept of
a market. It does not introduce prices except implicitly (for final com-
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modities) in the formulation of the objective, which is to maximize a
given linear function of the amounts of certain activities or (equiva-
lently) commodities. It utilizes the concept of an exogenous activity
to introduce limitations on the amounts of primary (or initially availa-
ble) resources and is therefore an open model, unlike von Neumann's.

The model developed by Koopmans [III] is a static flow model but
in other respects builds on the work of von Neumann and of Dantzig.
It is an open model in which, instead of specifying a single objective
funetion, the class of all objective functions that do not exhibit satura-
tion of demand for any of the ‘“final commodities” is admitted. Allo-
cative efficiency, in von Neumann’s analysis a property of a solution of
market equations, is here made into the main object of study. The pro-
duction function is defined as the set of all points in the space of com-
modity flows that result from an efficient combination of activities.
Substitution of factors in production is studied as resulting from such
shifts in the levels of the combined activities as preserve the efficiency
of the combination. While this model is again an allocation model in-
dependent of the concept of a market, a price concept applicable to all
commodities is derived from the requirement of efficient allocation.
These prices represent marginal rates of substitution whenever the lat-
ter are defined. They are related to the technological data in the same
way as prices resulting from a competitive market structure and ean
be used as devices to decentralize allocative decisions.

Georgescu-Roegen [IV] discusses a production function concept simi-
larly defined bui using & somewhat different definition of the elementary
activity. He then relates those concepts to von Neumann’s model and
gives an alternative proof, based on more elementary mathematical con-
cepts, of von Neumann's theorem regarding the existence of a solution
of expanding equilibrium.

The remaining articles of Part One deal with vartous aspects of the
models utilized by Leontief. In Chapter V Georgescu-Roegen discusses
a dynamic generalization of the static Leontief model for two industries,
which also extends earlier discussions in mathematical business eycle
theory. Smith [VI] discusses the uses of Leontief models for answering
quantitative questions relevant to economic policy and the interpreta-
tion of the variables in these models appropriate to each use. Chap-
ters VII, VIII, IX, and X all deal with the effect of introducing alterna-
tive methods of production into Leontief models. 1t was pointed out
by Samuelson, and independently by Georgescu-Roegen, that, ag long
as each available method has only a single final commodity as output,
and as long as only one primary factor of produetion is subject to a limi-
tation on availability, then any bill of goods (set of final commodity
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flows) that can be produced in suech a technology can be produced effi-
ciently by utilizing only one particular production method for each
commodity (this method being the same for all bills of goods). A proof
of a theorem stating this property more precisely is outlined by Samuel-
son [VII]. This proof assumes that the alternative methods available
for each commodity can be summarized in a differentiable production
function. An alternative proof using the properties of closed convex
sets has been developed in order to show that this assumption is not
necessary for the theorem. Koopmans [VIII] gives such a proof for a
three-industry model. Arrow [{IX] generalizes this method of proof to
the case of n industries, at the same time introducing an alternative,
gtill weaker, set of assumptions. An sbstract is given of Georgescu-
Roegen’s results [X], partly overlapping those formulated by Arrow but
containing interesting further particulars. This investigation will ap-
pear in full elsewhere.

It was said above that the articles of Part Two are on the whole
more expository in nature. This applies in particufar to the opening
chapter [XI], where Hildreth aud Reiter discuss the use of linear
models in the production policy of a firm facing given market
prices.? :

Wood and Geisler [XII] communicate their experience with program-
ming problems as they arise in the practice of a large organization. They
develop a model with a nearly triangular coefficient matrix to deal with
dynamic situations in which the scheduling problem of stiecessive ac-
tivities has prominence over the problem of choice between alternative
activity combinations. Wood also illustrates the flexibility of linear
maodels by using them to approximate situations characterized by non-
linear growth curves [XITI].

Koopmans and Reiter [XIV] present an application of the theory of
Chapter IT1 to a static model of transportation; in this analysis the spe-
cial way in which “intermediate’” commeodities occur in the technology
leads to the use of linear graphs as a tool of analysis.

Simon’s contribution [XV], followed by comments from Coale and
Brozen, deals with the varous effects of additions to a technology
through inventions or innovations. It is shown by graphical illustra-
tion how the addition of a new activity may affect the techniques actu-
ally used, or only the techniques that would be used under ditferent

3 It may be pointed out that in this article the prices, dencted by p;, are different
in interpretation from the “internal” prices denoted by px in Chapter 11T or by p;; in
Chapter XIV but correspond to the “external” prices denoted by = in Chapter III,
Bection 5.11.
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availability conditions of primary resources, or may have no effect at
all, depending on the input-output ratios of the new activity.

Morgenstern [ X VI] abstracts a discussion of the limitations placed on
programming methods by the inaccuracy of the statistical data used.
This study has since been published in full elsewhere [Morgenstern,
1950].

The mathematical tocls presented in Part Three are relatively new to
economics. Methods involving convex sets have been used in economics
by von Neumann [1937, 1945} in his model already referred to, and by
von Neumann and Morgenstern [1944] in the theory of games. In both
cases the need for such methods arose from the presence of linear fune-
tions of variables which are by their nature nonnegative. This circum~
stance results in a close mathematical connection between the theory of
production and the theory of games, although these theories deal with
quite different problems and the variables in question represent quite
different entities, that is, levels of activities in production theory and
probabilities entering into a “mixed strategy” in the theory of games.

The belief may here be expressed that the theory of point sets in gen-
eral, and of convex sets in particular, will be an increasingly important
tool in economies In many econumic problems a preference ranking
of alternatives representable by points in a space is confronted with an
opportunity set. Often both the opportunity set and the sets of points
preferred-or-indifferent to any given point can be assumed convex. In
such cases the use of convexity properties readily permits the study of
optimizing choice from all available alternatives. On the other hand,
the methods of ealculus, more familiar to economists, permit at best a
comparison of the chosen alternative with alternatives in its neighbor-
hood, and that only if the required number of derivatives exist.

In these comments the émphasis should fall on the convexity of the
point sets studied in Part Three rather than on their polyhedral charac-
ter arising from the use of a finite basis of points or halflines. We refer
here to our previous observation that the use of polyhedral sets, which
tends to exaggerate the departure from earlier discussions of production
funetions, may be a matter of mathematical convenience and approxima-
tion only,

A closed convex point set (in a Cartesian space) can be built up from
within as the convex hull (convex closure) of a basis or cut down from
without as an intersection of halfspaces. This fundamental equivalence
was developed by Herman Weyl [1935, 1950], after earlier work by Min-
kowski [1896], for the case of convex polyhedral cones, where a finite

4 For similar remarks see Arrow [1950, p. 60] and Samuelson [1947, pp. 75, 111].
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number of halflines (issuing from the origin) suffice as a basis and a finite

number of halfspaces (pivoted on the origin) suffice to form a cone by

intersection. The purpose of Gale's chapter [XVII] is to give a para-

phrase of Weyl's result for the readers of this book and to illustrate its

application to linear models of production and to the theory of games.

The relationship between the set of all halflines eontained in a polyhedral

cone and the get of all halfspaces containing that cone is expressed by
Gale in a “duality theorem” [XVII, Theorem 2]. Among its applications
used in the study of allocative efficiency is & ‘‘separation theorem”

[XVII, Theorem 4]. Gale’s discussion also illustrates how each prop-
erty of a cone taken as an intersection of halfspaces can be restated as a
property of a system of homogeneous linear inequalities.

In Chapter XVIIT, which was developed after Gale’s contribution
became available in manusecript, Gerstenhaber gives a self-contained
discussion of the properties of convex polyhedral cones, properties that
have been found to be relevant to the analysis of the model of produc-
tion of Chapter III. The concepts of a frame and the relative interior
of a cone are developed and are employed to obtain a unique decompo-
sition of a cone into open facets. This analysis rests almost entirely on
the definition of a cone as a convex hull of halflines but includes an al-
ternative proof of Weyl's theorem of which the duality theorem [XVII,
Theorem 2] is a direct consequence. The style of analysis is abstract,
and readers unfamiliar with the concepts involved will derive material
help from the prior reading of Chapter XVIIL.

(Gale, Kuhn, and Tucker [XIX] discuss a problem of finding a maxi-
mal matrix (rnaximal with respect to all of its elements) permitting cer-
tain inequalities to have a solution. They examine this problem in its
relation to a minimization problem, in a sense dual to it, and to a game
problem symmetrically constructed from the data common to both
problems.

The maximization problem referred to is a generalization of, and
hence contains as special cases, the maximization of a linear scalar ob-
jective function discussed by Dantzig [11] and the maximization (with
respect to all elements) of a commodity flow vector which is a linear
function of activity levels,’ as discussed by Koopmans [I1I). The math-
ematical aspects of the methods and theorems used in these earlier
studies are thus explored from a more general point of view. The ex-
clusive use of the language of linear inequalities in this chapter should
not conceal the affinity of its mathematical content to other articles in
the volume formulated wholly or partly in the terminology of convex

5 A key to corresponding notations in Chapters 1II and XIX is given in Chapter
XIX at the end of Sections 2 and 6.
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cones. Tor instance, the pivotal Lemma 3 of Chapter XIX can be
equivalently stated and proved in terms of cone theory.

In Chapter XX Dantzig demonstrates the mathematical equivalence
of the linear programming problem and the problem of finding a solu-
tion to a game. Computational methods or principles developed for
one purpose are thus made available for the other as well. The rapidly
growing literature on the theory of games ® thus has particular relevance
to the study of models of production, which are the subject of this book.

Research on computational problems in the maximization of linear
functions on convex polyhedral sets 18 being undertaken by various
groups. Any discussion of computation methods at this stage is likely
to be highly provisional. Iterative methods seem most appropriate to
the nature of the problem. The main method available at present is
Dantzig’s simplex method, presented by him in Chapter XXI and ap-
plied to a game problem by Dorfman [XXIT). A special form of the
method for application to the transportation problem 7 of Chapter XIV
is algo presented by Dantzig [XXTII].

It has been found so far that, for any eomputation method which
seems useful in relation to some set of data, another set of data can be
constructed for which that method is obvicusly unsatisfactory. A va-
riety of methods will therefore have to be explored. Brown [XXI1V]
outlines & method which was developed independently of & similar
method by von Neumann and which is the subjeet of a more detailed
joint publication by these authors? In Chapter XXV some untried
suggestions are offered by Brown and Koopmans that might be of use
when a systematic exploration of computation methods is undertaken.

8 For a collection of recent studies in this field containing further references to the
literature, see Tucker [19501.

7 A key to corresponding notations in Chapters X1V and XXIII is given in Chapter
X1V, Section 2.6.

8 Included in Tucker [1950].
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THE PROGRAMMING OF INTERDEPENDENT ACTIVITIES:
GENERAL DISCUSSION *

By MarsHALL K. Woob axp Greoree B. DanTzic

The mathematical model discussed here and in Chapter II is a gen-
eralization of the Leonfief interindustry model. It is closely related to
the one formulated by von Neumann [1937, 1945]. Tts chief points of
difference lie in its emphasis on dynamic rather than equilibrium or
steady states. Iis purpose is close control of an organization—hence it
must be quite detailed; it is designed to handle highly dynamic prob-
lems—hence it puts greater emphasis on time lags and capital equip-
ment; it takes into consideration the many different ways of doing
things—hence it explicitly introduces alternative activities; and it rec-
ognizes that any particular choice of a dynamic program depends on
the “objeetives” of the “‘economy’’—hence the selection and types of ac-
tivities are made to depend on the maximization of an objective function.

Programming, or program planning, may be defined as the construc-
tion of a schedule of actions by means of which an economy, organiza-
tion, or other complex of activities may move from one defined state {o
another, or from a defined state toward some specifically defined objec-
tive. Such a schedule implies, and should explicitly preseribe, the re-
sources and the goods and services utilized, consumed, or produced in
the accomplishment of the programmed actions.

The economy or organization for which a program is to be constructed
is here conceived of as comprising a finite number of diserete types of
activities each of whose magnitudes is to be specified over a certain time
period. For convenience, the magnitudes (or levels) of each of the ac-
tivities will be specified for each of a finite number of discrete time
periods,? rather than continuously over the total time period involved.

! This is & revision of a paper presented before the Cleveland Meeting of the
Econometric Society on December 27, 1048, and was originally published, in a more
extensive form, in Economeltrica, Vol. 17, July—October, 1949, pp. 193-199. A second
paper, with the subtitle “Mathematical Model,” contains a more mathematical
formulation of the problem and is included as Chapter I of this volume.

2 The model deseribed here is treated in Chapter 11, Section 4, as “A Special Finite
Model.”

15
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The resources and the goods and services utilized, consumed, or pro-
duced by the activities are hereafter referred to generically as “commod-
ities” # and are measured in terms of the quantities of specifie types of
commodities. The quantity of each commodity type used, consumed,
or produced by each activity is assumed to be a function of the magni-
tude of the activity, usually proportional. Two activities are interde-
pendent when they must share limited amounts of a commodity which
they use in common, when one produces a commodity which is used by
the other, or when each produces a commodity used by a third activity.

These interdependencies arise because all practical programmiing prob-
lems are circumseribed by commedity limitations of one kind or another.
The limited “‘commodity” may be raw materials, manpower, facilities,
or funds. One or more of these is almost always limited in any type of
program. To some extent, all of them are usually limited in program-
ming problems, since any program must start from a definitely pre-
scribed initial status, at which point all commodities are limited. Gen-
erally, these limitations of initial status are felt over several succeeding
time periods because of the existence of limitations on the rates of growth
of the activities producing the eommodities.!

There are two general formulations of the programming problem. In
the first formulation, the quantities of each of several activities con-
tributing directly to objectives (or “final demand"”) are specified for
each time period; from this it is desired to determine the magnitudes of
the required supporting activities, their total requirement for com-
modities from outside the system, and whether or not these total re-
quirements are consistent with the initial status and subsequent limita-
tions. Procedures for solution of the problem in this formulation have
consisted generally of ordering the work in a series of stages. In the
first stage, the input requirements of the specified “final demand” ac-
tivities are computed. In the second stage, those supporting activities
whose output is principally utilized by the “final demand” activities
are computed. In the third stage, those supporting activities whose
output is principally utilized by both the “final demand” activities and
the activities whose resource requirements were computed in the second
step are computed; and 80 on.5 To the extent that the conditions speci-
fied in the above arrangement can bhe met, this procedure yields consist-
ent results. However, when one activity utilizes a commodity produced

3 The term “‘item’ as used in Chapter II and elsewhere is synonymous with “com-
modity” as used here.

* These growth rate limitations are discussed in Chapters XII and XIII.

5 This procedure is essentially the Gauss-Seidel method for solution of simultanecus
linear systems. ‘
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by another, and the other also utilizes & commodity produced by the
first, a circular relationship exists which precludes satisfying the condi-
tions of this arrangement, and a satisfactory solution can be produced
only by successive iterations of the procedure. The procedure is also
deficient in that it does not permit the consideration of alternative proc-
esses or activities. . .

In the second formulation of the programming problem, we seek to
determine that program which will, in some sense, most nearly accom-
plish objectives without exceeding stated resource limitations. At pres-
ent, such problems can only be solved by successive iterations of the
procedure described under the first formulation. Yet this second type
of problem is precisely the one which we are constantly required to
solve, often under conditions requiring an answer in days or hours,

To accomplish this, it iz proposed to represent all the interrelation-
ships in the organization or economy by 2 large system of simultaneous
equations in which the variables are the quantities of the activities to
be performed, the coefficients are the requirements of each activity for
each eommodity, and each equation expresses that the sum of the re-
quirements of all activities for a single commodity equals the sum of the
outputs of that commodity from all activities. To prepare a program
it is pecessary to insert into these equations a detailed specification of
the initial status in terms of the quantities of each commodity on hand,
any subsequent limitations (such as may be imposed by the capabilities
of industries or other activities for expansion), and a statement of ob-
jectives.

To compute programs rapidly with such a mathematical model, it is
proposed that all necessary information and instructions be systemati-
cally classified and stored on magnetized tapes in the “memory” of a
large scale digital elecironic computer. It will then be possible, we be-
lieve, through the use of mathematical techniques now being developed,®
to determine the program which will maximize the accomplishment of
given objectives within those stated resource limitations. Alternatively,
it will be possible to determine the program which will minimize re-
quirements, either for funds or for any limiting commodity or group of
commodities, needed to accomplish any fixed objective.

The work being done on the mathematical model has clearly shown
the necessity for a more precise formulation of objectives. Planners
generally have been accustomed to stating objectives in terms of means
rather than ends (i.e., they have been accustomed to stating objectives
in terms of specific operations whose relations to the accomplishment of

¢ Some of these techniques are discussed in greater detail in Chapter II.
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basic ends could only be evaluated subjectively). Objectives must be
stated in terms of basic ends, thus permitting the consideration of alter-
native means, if they are to be useful in programming operations de-
signed to maximize objectives within resource limitations.

In military program planning, it is necessary to introduce quantita-
tively the various limitations of resources which restrict the capabilities
of the military establishment during wartime as well as in peacetime.
For the most part these may be traced to limitations in the industrial
economy of the nation. Tt is necessary to know what part of the total
national production can be made available for military purposes. This
cannot be measured solely in terms of the productive capacity of the
aireraft industry or of the munitions industry any more than the strength
of an air force ean be measured solely in terms of the number of groups.

It is necessary to know in detail the capacities of the steel, aluminum,
electric power, transportation, mining, chemical, and a multitude of other
industries supporting the aireraft, shipbuilding, and munitions indus-
tries, just as it is necessary to know the capacities of the training, trans-
portation, maintenance, and supply activities supporting the combat
air groups. Further, it is necessary to determine whether these indus-
tries (or supporting activities) are balanced in the proper proportions
to meet changing requirements.

Thus, since the determination of the “best” program necessarily
starts with a consideration of limitations on resources, it must neces
sarily start with a consideration of the interrelationships of industries
in the mdustrial economy of the nation,

The first steps toward the required analysis of interindustry relation:
ships have been taken by Professor Leontief and by the Bureau of Labo
Statistics. These studies consider relationships in a static or equilibriun
state. Theoretical work now under way by several groups will make i
possible to handle these relationships dynamically and with due con
sideration of alternative procedures, or processes, as is done in the math
ematical model we are now developing for the internal operations ¢
the Air Force.”

7 The formal mathematical model is discussed in Chapter II and is illustrated b
concrete examples in Chapter XII.
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THE PROGRAMMING OF INTERDEPENDENT ACTIVITIES:
MATHEMATICAL MODEL!

By Georar B. DanTzIG

1. LinEaR TECHNOLOGIES OR MODELS
Postulates of a linear lechnology:

PosturaTe I: There exists a class of objecis {A} called “possible activ-
ities.”

PostuLaTe I1: There exists a finile set of m things, called “items” (com-
modities), denoted by the index i = 1,2, --+ |, m.

PostorLaTe 111: Associated with each possible a,ctibity, A, and item, 1,
there is a set of characteristic “‘flow functions” (cumulative) of a vuriable
t, (—o <t < Fe0):

(1) F,,(tlA) (7:=1121"':m)‘

PostoraTe 1V: Given any two possible activities, Ay and A, where 4,
and As may be identical, there exists a possible activity, denoted by 4, + Ao,
whose characteristic funclions are thé sum of the corresponding functions
for Ay and A, respectively:

(2) Fi(t|A1+A2) =Ft(t|A1)+F‘L(t|A2) (7’= 1)27 e :m)'

Posturate V: For any = = 0 and ony possible activity A, there exists
a possible activity, denoted by zA, whose characteristic functions are the
product of x and the corresponding functions for A:

(3) Fit| zA) = «F;(t| A) (=12 --,m).

We shall now discuss physical situations where these postulates may
be applicable. The multitude of activities that any large organization
or a nation engages in, in the pursuit of its objectives, are examples of
a larger class of possible activities. Thus the various observed activities

1 The present paper represents a revision and extension of an earlier paper which

appeared in Econometrica, Vol. 17, July—October, 1949, pp. 200-211.
19
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are representative building blocks of different types that might be re-
combined in varying amounts to form more complex but possible activi-
ties. The whole set of possible activities we will refer to as a fechnology.
Fach activity requires many items to flow into it from “outside” the
activity over time. It may also produce or make available many of
these items over time that in turn may be used in other activities. The
total quantities of these items are often limited in amount, and this fact
places a restriction on the set of possible activities that can coexist at
any one time in what we shall refer to later as a “program.”

Thus each activity, from our point of view, is characterized by the
flow over time of a set of items which, if one conceives of an activity as
ocoupying physical space, flows from the outside world into the activity
or flows from the activity into the outside world. If two or more ac-
tivities are considered as a single composite activity, it is postulated
that the net flow of any item over time to or from the composite activity
is the sum of the corresponding flow functions over time of the individual
activities.

Natural as this assumption of additivity may seem, it may appear in
fact to be “refuted” by many examples. Thus a day shift operation
and a night shift operation may each require one machine but certainly
do not require two machines when both are operating simultaneously.
A careful analysis of their respective flow requirements for this item
over time will show, however, that each requires one machine but at
different times; thus the combined flow functions would also require one
machine for both activities at any given time.

One simple consequence of the additivity assumption, Postulate IV, is
that it includes the existence of intégral multiples of a possible activity,
Thus, setting 41 = 4, = A, Postulate IV states that it is technically
possible to construet another activity whose flow functions are double
the respective flow functions of any given activity. By adding 4 to
24, one obtains 34, ete. Accordingly, Postulate IV implies Postulate
Viorz =1,2,3, .--- . Postulate V goes one step further in that it as-
sumes tnfinile divisibility of an activity.

The lack of realism of this assumption of divisibility is not to be dis-
puted. For example, mass production activities often use (for reasons
of economy) huge presses that cannot be constructed below a certain
size. To cite another case, a garage may employ labor to repair ma-
chinery. In order to reduce the time in shop, it may try to increase
the labor force. The activity carrted out by this labor force will cease
to be economical when the respective jobs of two workers require that
they work on the same part at the same time. Accordingly, Postulate
V has been introduced as a mathematical convenience for studying prop-
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erties of large scale systems and development of computational pro-
cedures for solving certain dynamic programming (scheduling) problems
for such systems. Thus one must take care in real situations to discover
significant indivisibilities and to make necessary adjustments in the
results.

Let us turn our attention to certain mathematical properties of the
set of postulates. It will be noted that there is a one-to-one correspond-
ence between the addition and scalar multiplication of activities and
the corresponding operations on the vector function, (4), of an activity
A. Because of this isomorphism, the vector function of time can be iden-
tified with A and given the same symbol,

DEFINITION: The null activity, denoted by 0, is a symbol for the vector
function of time whose m flow functions vanish,

(5) ©0,0,:---,0)~0.

By Postulate V, it is permissible to multiply (4) through by z = 0;
thus the null activity is always included in the set of possible activities,
{A}. By (5), we may write 04 = 0, where 0 on the left represents the
scalar £ = 0 whereas on the right it is the vector function of time (5).

The class { A} of possible activities is infinite; in fact, it has the power
of the continuum. Thus it is natural to consider a smaller class of ac-
tivities that may be conveniently used to generate the larger elass. For
example, for = 0, the set of activities zA can be generated from A.
Therefore a basic set of “unit” activities could be chosen such that any
other activity would be a positive multiple of some activity in the unit
set of activities. Furthermore, by excluding from thig basis any unit
activity that can be expressed as a positive linear combination of k
other activities in the basis, a still “smaller” basic set of activities could
be used to represent {A].

A linear technology can thus be categorized according to whether it
can be represented by a linear combination of a finile set, a denumerable
set, or a continuum of basic activities. We shall consider three separate
sete of postulates to cover the finile lechnology, a special conftnuous
technology, and an analogous denumerable technology. We shall also use
the term model to connote a mathematical representation of a tech-
nology.

Postulates of a finite linear technology:

Posturates 1-V: Same as for a linear technology.
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Posrurate VI': There exists a findte basis, By, By, --- , By, in {A}
such that any A can be expressed as a positive linear combination of pos-
sible activities in the basis:

(6) A = lel + ysz +-.-4 yan Ui z 0.

2. Linear TecunoLocies witH TimMeE SHIPTS

It is, of course, possible to have technologies where a time shift of a
possible activity is also a possible activity. For example, the teaching of
an algebra course in a uriversity may oceur periodically each September
and February. Itis convenient in such cases to assume that the cumula-
tive flow functions characterizing these activities can be made to coincide
by a suitable translation in time. If the possible time shifts of & given
activity are finite or denumerable in number, we shall refer to it as a
finite or denumerable model with time shifts. If any shift = is permissible,
we shall refer to it as a special continuous model with time shifts. In
models of this kind there may be no finite basis (i.e., the time shifts of a
possible activity are not representable as a positive linear combination
of a finite set of basic activities). Usually in practice, however, there
exists a finite number of activity types such that by taking combinations
of different time shifts of these types all other aetivities can be repre-
sented. In this case any activity A can be represented in terms of some
“derived basis” By, B3, --- , By where B} (which need not be the same
for all A) is derivable from a fixed B; by various combinations of time
translations of B;. In the denumerable case

() Bj = 4oBi(0) + y1Bj{r1) +- -+ puBilr) +-+-, % 20,

where B; = B;(0) represents a typical type of activity and B;(r;) repre-
sents a time shift of , of this activity (k =1, 2, --.). In the con-
tinuous ease where any time shift r is permissible, the sum defining B
above is replaced by an integral. Thus, for example, the steel industry
may have a continuougly varying production rate ¥(r) over time. In the
time interval r to r + dr, the total quantity of production is approxi-
mately y(r) dr and the cumulative flow functions associated with this
production are given approximately in vector form by B;(r)i(r) dr, where
B;(r) represents the activity of producing a unit quantity of production
of steel at timer. The composite flow functions over time of the industry
which brings about the produection pattern 4(r) can be represented as an
integral
+w
®) B} = Bi(r)ylry dr,  y(z) 2z Q.

—0
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The meaning of this vector relation (8) becomes clearer when expressed
in terms of the corresponding flow functions B;(+). First, it will be noted
that the correspondence between B;(r) and B; = B;(0) is defined by

Fit|Bie) =F{t—+|B) (=12 ---,m),

so that the flow functions of B can be expressed directly in terms of
these for B;,

w0
FOIB) = [RGB =12 ,m.

So far in the eontinuous case we have considered the situation in which
a density (noncumulative) distribution of weights y(r) exists represent~
ing, say, the rate of production at time ». This does not allow, as in the
denumerable case, for a finite weight (quantity of production) at a point
r. In order to generalize, consider instead the cumulative distribution
function of weights Y(r), where Y(r} is monotonically nondecreasing.
Any point 7; where there is a finite jump yx in the function V(r:),
represents a finite amount of production ¥, at time 74 of the activity
B{rz). The Lebesgue-Stieltjes integral may now be used to cover g
combination of both situations. This more general way of expressing
B} is used in (12) below.

One more point worth noting is that the passage from a finite sum as
in (7) to an integral as in (8) tacitly assumes (since the integral is de-
fined as a limit of finite sums) that there exists an activity whose flow
functions are equal to the limit of a sequence of corresponding flow func-
tions of a set of activities (see Postulate VIII™).

The above discussion may be formalized as follows:

Postulates of a special linear continuous technology:
PosturaTes I-V: Same as for a linear technology.

Posturate VI”: For any r there exisis a possible activity, denoted by
A(7), that is a shift in time by r of a given possible activity A:

9) Fit|A@) =Ft —+1A) (i=1,2 -, m).

Posturate ViI'': There exists a finile basis of n possible activities, By,
By, -+, By, in { A}, such that any possible activity A can be represented by

(10) A=B+B;+---+ B,
where each B} is given in terms of B; by
o0
(1) Bf=| Bina¥ri) (G=1,2---,n),

—G0

in which Y;(r) is o monotonic nondecreasing function of .
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Postorate VIIIY: If the corresponding flow funclions of a sequence of
possible activilies converge uniformly in i, there exists a possible activity
A to whose flow functions the sequence converges.

The postulates of the fintle or denumerable model with time shifts differ
from those of the continuous model in that the range of v for each B; i3
restricted to a specified set, S;, of permissible time shifts of B;. There are
several models that would then satisfy the above postulates. Thus
models constructed for Air Force programming purposes often have
equally spaced time shifts, but not necessarily the same time shift for
each of the set of basic activities. In some cases the model was finite,
in others infinite. Ven Neumann’s model [1937, 1945} represents an
earlier example which is denumerable with equally spaced transiations.
The general dynamic model lately discussed by Leontief, on the other
hand, satisfies the postulates of the continuous model.

8. LinEar PROGRAMS

We shall now turn our attention to the central problem, namely that
of considering whether a set of nonvanishing activities can be set up
that is self-supporting.

DermvnitioN: A subset of (A} of nonvanishing possible activities, A,
Ag, -+, Ay, constituies a possible “program’’ if

(12) S A =0.

The above equation contains the germ of an interesting philosophical
thought, since such a set of activities could apparently arise out of noth-
ing and yet could coexist. The usual situation that arises in practice is
one in which it is desired to find a sum of possible activities (or, what
is the same thing, an A) which will receive flows from outside the system
and will send out flows in specified amounts.

DerFiviTION: A requirved vector funclion of flows into and cway from a
set of posaible activities will be denoted by —E. The pegative of this re-
quired set of flows, E, will be referred to as the “exogencus activity.”

DermNiTioN: A subset of | A} of nonwvanishing activities, A, As, -
A, constitutes o possible program relative to E if

.
E

(13) Av+Ag oot A3+ E =0,
i.e., if —E is contained in {A}.



CHAP. 1] PROGRAMMING OF INTERDEPENDENT ACTIVITIES: II 25

Thus, for & finite model, a possible program relative to E exists if
there exist values 24, 2, - - - , z, such that

(14) 1By +2Bo+- -+ zBa+ E=0, ;20

The number of units z; 2 0 of the basic unit activity B; entering into
a solution (x1, 2, --+ , Tx) of (14) is called the level of the activity.
The set (z1, @2, - -+ , Tx), provided it exists, is called a feasible program.

For the continuous model a possible program is obtained if we can
determine monotonic nondecreasing functions, X;(r), Xa(z), -+ , X,(7),
such that

(15) Bf+Bi+---+ B+ E=0,
where

w0
(16) Bf =f B;(r) dX;(7).

—a0

4. CRITERIA FOR SELECTION OF PROGRAMS

It is not always possible to find program levels x;, or the analogous
cumulative levels over time X;(r), in which case there are no feasible
programs. Should, however, one feasible program exist, then in the
general case many feasible programs exist (i.e., the levels in terms of
basic activities are not unique).

Inequality relations on the quantities of various items or activities
are common ways, of course, to express preferences between alternative
choices of feasible programs. For example, equations (14) and (15) state
an equality relation between the flows created by the activities in the
program and the complementary flows toward the exogenous activity.
For certain elements of the vector function of time that express the flow
of raw materials to support the economy from outside the economy, the
inequality £ might be better, whereas, for other items that are desirable
outputs of the economy, the inequality = would be superior.

Expression (14) represents an infinite number of linear equations in a
finite number of unknowns, (z;, s, --- , x,). Thus (14) implies one
equation for each item-time combination. At most » of these equations
can be linearly independent.

Therefore there exists a set of at most » item-time combinations which,
if the equations are satisfied for any z; (nonnegative or otherwise), will
be satisfied for all item-time combinations. Not all exogenous activities
E relative to By, Bs, * - - , B, have this property; indeed, ¥ is completely
specified once its values are given over a certain finite set (£n) of item-
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time eombinations. By such considerations the problem of finding non-
negative solutions to an infinite set of linear equations in a finite number
of unknowns can be reduced to one of finding nonnegative solutions for a
finite subset of these equations.

The addition of linear inequality conditions to finite models ean, pro-
vided the number of such inequality relations is finite, and this need
not be the case, be replaced by a system of equalities in nonnegative
variables. This means that the general character of the mathematical
problem is not altered by the introduction of such restrictions. To illus-
trate, consider the following relations by way of example: 2 S a,y = b
z = y, where z = 0, y = 0 are levels of two activities and a and b are
eonstants, Introducing additional nonnegative variables, z, = 0, z; = 0,
z = 0, we may rewrite the systemasz 4+ z, = a,y —y = b,z — y — 2
= 0.

We shall now introduce the concept of a maximizing principle the
purpose of which will be to help define a unigue program (except in
certain “degenerate” cases).

Posturate VII' (finite linear technology): There exists a linear objec-
tive funciton,

Q17) 20 Vi = 2.

J=1

PosTurate IX" (special linear continuous technology): There exists a
linear objective function,

(18) Nn+vi++tr=sz
where .
4w
(19) vy = f vi(7) dX;(r) (G=1,2 -, n).

—0

DrerinerioN: We call any program satisfying (13) and maximizing z an
optimum feasible program.

For example, in a large business there may be a number of ways to
produce a given product. If v; represents the negative of the cost per
unit of the jth activity, then (17) measures the amount of profit. (See
in particular the transportation and nutrition examples at the end of this
chapter.)

In the Leontief steady state dynamic model [1948b; also Cornfield
et al., 1947], the bill of goods for the final customer is usually specified
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as constant rates per unit of time for various items. Thus the exogenous
activity ¥ satisfies
dE o
(20) . ’
where  is a constant vector function of time,

The Leontief steady state model is essentially a finite type of model
that can be derived from the special continuous model by assuming a
constant but unknown rate, z;, of completed production of an activity,
B; [see (11)],

dX(7)

= x; = constant.
dr

By (11), the composite industrial activity B, derived from Bj, is given
by

(22) B} = z; [

(21)

+o0

Bi(r) dr].

—uw

Letting F(¢) be a typical cumulative flow funection for some item asso-
ciated with B;, and F*(2) the corresponding function for B}, then, by (7),

@3) F*(l) = z; [ f_ R = ) df].

Sinee, in general, however, it is not expected that the cumulative flow
F{t) — 0ast — «, the integral in (23) will usually not converge. On
the other hand, assuming for simplicity that the rate of flow exists over
a finite interval and is zero elsewhere, then

dF*(t) YRRt - 1
(24) T x [f_w 5 dr] = x,-[:lln: F(@)),

where lim,_, , F(f) is thus the input (or output) coefficient of the item
per unit level, z; = 1, of the composite activity B} in the Leontief
model. Let U, represent the vector of constant input-output coefficients
for BY evaluated at unit level of production, z; = 1. Then, by sub-
stitution in (15), a possible program is obtained if we can determine
z; = 0 such that

(25) . nlUi 4+ 22U+ 4 2,0, + C =0,

where C is given by (20).
The bill of goods of the final customer, C, represents the objective
to be achieved in the steady state model. Leontief, however, set up
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the model so that » = m. The solution to (20), therefore, is unique
when the determinant of the coefficients, I Uy, Ug, --+, Uy |, is non-
gingular. If n > m, then (25) is not necessarily a uniquely determined
system. If one of the items considered is labor, it may be desirable to
minimize the use of this item, in which case this equation is omitted
from (25), and its left-hand member becomes the linear form z to be
minimized (or its negative, maximized).

As a second example, suppose that it is desirable to test in a finite

model whether a given feasible program, 21, 23, - - - , 2, constitutes an
“‘efficient point” in the sense of Koopmans [III, Section 5.2]. By re-
arranging the subscripts of activities, it is possible to let 3, 23, --- , 2}

specify the amount of consumption by, say, households of certain
“desired items,” where the consumption of an item by a household is
considered an activity. It is assumed k << n. If there exists no solu-
tion zy = 17, 23 = 23, -+, zx = z (except all equalities) of (14), then
29, 23, « -, 20 is defined as an “efficient point” [see also (15)]. It will be
noted that this definition expresses an efficient point in terms of activities
rather than items. Setting ; = 23 + 91, -+ , 2% = 20 + ¥; Tpyy =
Yty *** » Za = Yn In (14), a solution y; = O is sought to the system

(26) By + By -+ B, + E =0,

which maximizes

@n Nty +--+m =g
where E is given by

(28) E=E+ (2B, +---+ 29By).

Because of the feasible set of values 3, 23, - - - , 20, there exists at least
one solution to (26) with ¥ = 92 = ¥ = 0 so that maxz= 0. If
maxz = 0, then 23, 23, --- , z2 is an efficient point. If maxz > 0,
then the new solution in terms of z; constitutes such a point. For the
property of efficient points on which this text is based, see Chapter 111,
Section 5.

5. A SeeciaL Finrre MobEL

Our purpose now is to develop the equations of the dynamic system,
using a special finite model. "This is the original form of the early models
developed for Air Force uge. Essentially it is the same as one described
by J. von Neumann [1937, 1945]. However, we shall seek programs
based on this model, which maximizes a linear objective function, whereas
von Neumann investigated the existence of programs whose levels were
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expanding at a constant rate over time. Because this model is useful
for many purposes and reveals the essential computational problem, it
will be discussed now. We shall use equally spaced points in time,
t=20,1,2, -+, T, for ease of notation, and we shall assume that each
basic activity is associated with some unit time period, £ — 1 to ¢, and
that the cumulative flow functions of such an activity are step functions
with incremental changes only at points of time ¢ — 1 and ¢ such that
the rate of flow elsewhere is zero.2 We adopt the following notation:

(a) £=0,1,2, -+, T denotes consecutive points in time; the interval
(t — 1, t) will be called the tth interval.

(b) Bf-” represents the jth basic, unit level activity associated with
the tth interval.

(c) af is the increment added to the cumulative flow function of the
ith item for activity B at time ¢ — 1 (input coefficient).

(d) af is the chscret.e increment subtracted from the flow function of
the ith item for BY at time ¢ (output coefficient).

(e) z? denotes ‘the number of units of BP.

By our convention of signs, 4+ and — mdlca.te in and out. Thus e
and & will usually be positive.

No use will be made of the cumulative flow function F(t| 4). In-
stead, equation (14) will be replaced by the corresponding eguation
relating to the discrete additions or subtractions to the flow funetions
at ttmes £ = 0, I, 2, --- , T. This is valid since the rate of flow at
all other times is zero. Thus the equations of the dynamic system
become

(i= 132: e, M
99 00 — 3 g0
(29) E“* 7 ;o“” i t=1,2---,D),
where the boundary conditions are obtained by setting &% = 0 forj = 1,
and z¥ = 1. The objective function to be maximized is
T
(30) ;JZ P2 = z = max,

where z{° = 0.
6. Tur CompPuTATIONAL PROBLEM

The fact that the equations of the dynamic system impose additional
linear restrictions on the unknown levels of activities, besides the condi-
tion that they must always remain nonnegative, leads to a very inter-
esting computational problem that may be formulated in one of two

% A slightly more general model is presented in the version of this paper published
in Eeonometrica, using uniform flows during the ¢th time interval as well.
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ways: (1) Mazimize a linear funciion whose variables satisfy a system of
linear tnequalities. (2) Mazximize a linear function of nonnegative vari-
ables subject to a system of linear equalities. These two problems are
easily shown to be equivalent.

Except for general properties of the solution, very little can be found
in the literature that helps to solve numeriecally systems of equations
involving many variables. One important property that is worth noting
is the nonexistence of local maxrima. Thus any program which is not
optimal can always be improved by making small changes. A second
property worth noting is that the mazimizing solution ® necessarily in~
volves as few aclivities as possible at positive levels and as many as possible
o} zero levels,

It is proposed to solve linear programming problems which involve
maximization of a linear form by means of large scale digital computers
because even the simplest programming problems can involve a large
number of ealculations (see, e.g., the experience with the nutrition and
transportation problems mentioned at the end of this chapter). Several
computational procedures have been evolved so far, and research is con-
tinuing actively in this field.

Matrixz notatton: The essential form of the system of equations of the
dynamic system is more clearly brought out by the use of matrix nota-
tion. Let

(31 ¥ = { @ .’L‘é), oy xm}
be the column vector of levels of activities in the {th time period; let
(32) P = [a(t)] a0 = [&g)]

represent the matrices of the input and output coefficients, respectively,
in the ith time period; and let the row vector of coefficients of the
maximizing form associated with the activity levels that occur in the
tth time period only be denoted by

(33) 'Yw = (Tgt)r 'Yg)y e (t))

The constant terms in (29) can be written in vector notation also: let
(34) a® = @5 — o), aly P — o, ---, 2P — o)

fort =1,2, --- |, T. The equations of the dynamic system in matrix

notation become

3In certain degenerate cases there may be more than one solution yielding the

same maximum. If so, a unique solution could be obtained by the use of additional
maximizing functions,
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(35)
a(l)x(l) . e = gl
—azD | 4@® ces =g
—@ D@ p 4@ ., P = g3
eor —gTDLTD g ((DpT) (1)
WL PHIS SRR + v Dz = max,

where the z{? are vectors of nonnegative elements. It should be noted
that the general mathematical problem reduces in the linear program-
ming case to consideration of a system of equations of nonnegative
variables whose matrix of coefficients is composed mostly of blocks of
zeros except for submatrices along and just off the “diagonal.” Thus
any good computational technique for solving programs would probably
take advantage of this fact.

When the matrices o® and & (¢ = 1,2, --- , T) are square and
nonsingular, a direct solution is possible that may lead, however, to
negative and nonnegative activity levels (in which case no feasible solu-
tion exists).

7. APPLICATIONS

(a) The interindustry relationship studies of Leontief and the Burean
of Labor Statistics are well known. The relation between the input-
output coefficients of the steady state equilibrium model and the special
continuous model was developed in (21) and sequel. 'The more general
dynamic model lately considered by Leontief is a special case of a
special continuous model.

{b) The Hitchcock-Koopmans transportation problem [Hitcheock,
1941; Koopmans, 1947; and XIV and XXIII below] is an example of a
steady state solution that invelves the minimization of a linear function.
The problem may be stated as follows: A homogeneous product % in the
amounts of q1, gz, - - - , g, respectively, is to be shipped from s shipping
point origins, and amounts #, ra, - - + , 7y, respectively, are to be received
by d destinations; the cost of shipping a unit amount of product from
the ith origin to the jth destination is ¢;;, The problem is to determine

4See the papers in Part Four of this volume; see also papers by von Neumann
[1947, 1948] and Tompkins.

5In Koopmans' case the homogeneous product consisted of empty ships to be
moved from ports of discharge to next ports of loading, and the “cost” consisted of
time spent by these ships in travel.
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2, the amount shipped from ¢ to j, so as to satisfy

d
inj"_"'q{ (i=1!2,“')s))
F=1

(36) 2T =1 G=12--,d),
i=1

B d
Z E Cijkij = 2,
i=1 j=1
and to minimize total transportation costs z.

Because of the special form of the equations, simplified computational
procedures are possible. TFor example, a large scale problem involving
about 25 origins and 60 destinations was solved recently in 9 man days
by hand computation techniques. As only simple additions and sub-
tractions occurred in the process, even the use of a desk caleulator was
not required.

(c) The minimum-cost adequate diet problem was formulated by
Jerome Cornfield in 1941 and by G. J. Stigler [1945]. It is assumed that
(1) the eomposition in terms of dietary elements (i.e., minerals, calories,
vitamings) of & number of foods is known; (2) the prices of the foods are
given; and (3) the requirements in terms of dietary elements which will
keep a person in good health are known. The problem is then to find
a diet which will supply the requirements at minimum cost. Stigler
found a solution to the problem by testing various combinations under
the assumption that the body could dispose of any surplus of dietary
elements. A solution {o the problem which demanded that the require-
ments be met exaetly cost nearly twice as much. This result illustrates
the importance of disposal and storage activities. A problem involving
9 dietary elements and 77 foods took 120 man days to compute by hand.
This may be contrasted with the above transportation problem.

(d) A. Cahn [1948] has proposed a warehouse problem which can be
solved by linear programming fechniques. An entrepreneur undertakes
to operate a warehouse of fixed capacity by filling it with goods for which
there is a seasonal production and, consequently, a seasonal price. When
goods are in season, he can purchase them at a low price and sell them
later in the year at a higher price. Each month new goods become avail-
able, and the owner must make a decision regarding the disposal or
continued storage of his present holdings and the purchase of goods that
have just become available to use up his idle eapacity.

(e} In Chapter XII an application is given of the discrete type of
model to a hypothetical air transport problem.
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ANALYSIS OF PRODUCTION AS AN EFFICIENT
COMBINATION OF ACTIVITIES!

By Tsatumng C. KoorMmans

1. InTRODUCTION

1.1. Technology and choice. The concept of a production function oc-
cupies a central place in the literature on production theory. In some
discussions this concept is associated with a particular technological
process. The function is then supposed to represent the output of one
commodity (say) as a function of the quantities of various factors of
production, combined according to a given technological principle or
formula. Further elaboration of this concept has led to the distinetion
between situations where the set of technically possible factor combina-
tions is unrestricted (allowing for continuous substitution between fac-
tors) and situations where some factors can only be combined, within
the technological principle involved, in fixed ratios to each other (limita-
tional factors).? The second type of situation can only be reconciled
with the notion of a production function defined in the whole factor
space by allowing the production manager to diseard parts of the factor
quantities specified as being available. The corresponding production

1 This model was first developed in a more special form relating to the transporta-~
tion industry. In conversation, George B. Dantzig introduced me to the wider
applicability of models involving constant production coefficients to the discussion
of allocation problems. At this stage I also learned of and benefited from the litera-
ture on similar models reviewed in the introduction to this volume. An earlier version
of this chapter was presented at the Madison meeting of the Econometrie Society,
September 10, 1948. The present version has gained from the reading of other
papers in the present volume and s manuscript by Paunl A. Samuelson [1948]. I am
indebted to M. Gerstenhaber and M. L. Slater for vahiable suggestions regarding
terminology and methods of proof. Note added in proof: H. Freudenthal hias kindly
brought to my attention a fascinating article written by Remak [1920], which contains
in intuitive form some of the ideas concerning productive efficiency more fully
elaborated in the present chapter and some other chapters of this volume. His
treatment of prices, however, seems concerned more with accounting identities
than with prices as puides to efficient allocation.

2 8ee, among others, N. Georgescu-Roegen [1935], E. Schneider [1933], H. von
Stackelberg [1933].

33



34 T. ¢. KOOPMANS lPART 1

functions have kinks at the points where the ratios of available factor
quantities coincide with the technical ratios specific to the proecess in
question. .

It has long been realized that the concept of a production function
repregenting a given productive “technique’ is unnecessarily restrictive.
The “‘technique’ employed in production is itself the result of mnanagerial
choice {going beyond the discarding of unwanted factor quantities).
Managers choose between, or employ efficient combinations of, several
processes to obtain in some sense best results. Speaking still in terms
of one product of given quality, an efficient manager chooses that combi-
nation of productive activities which maximizes the amount produced for
given available quantities of factors which have given qualitative char-
acteristics. In this concept, the quality characteristics of the available
factors and of the desired product specify the variables entering in the
production function and the nature of the function. The available
quantities of the factors speeify the values of the variables, and the
maximal output specifies the value assumed by the function.

This concept of the produetion function, generalized to allow for joint
produection, is adopted in the present study. Since it defines the value
of the function as the result of a maximizing or (more generally) an
economizing choice, this concept is in the first place normative. It
represents the best attainable under efficient exercise of choice. The
production funetion so obtained is descriptive of reality only if and when
the assumption of efficient choice is a good approximation to reality.

1.2, Elements of the production problem. In this article a model of
production will be developed in which the following circumstanees or
considerations are treated formally as distinct elements of the produec-
tion problem:

(a} the purely technical possibilities of production,

(b) the guantitative limitations on basic resources (primary factors
of production) available to the economy,

(c) the general goal or objective to be served by produetion,

(d) the optimizing choice whereby the technieal possibilities are
exploited in a coordinated manner toward that objective.

Any production function to be derived from this model will be inclusive
rather than aggregative. That is, while no aggregation of commodities
will be presupposed, the production function will be thought of as express-
ing the productive potential of an entire economy, or of any technically
well-defined part thereof. We shall use the term “economy” to refer
to either the whole or a defined part of what is usually called the economy.
Such production function as may be arrived at represents the most
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favorable achievable relationship between the inputs of individual
primary factors of production and the final outputs of individual com-
modities through that “economy.” A number of economists have
postulated the existence of such a general transformation function of an
economy.> When applied to a sufficiently wide concept of the economy,
it involves a& broader choice of combinationg of productive activities
than is available to the individual firm. We shall therefore from here
on speak of a “transformation function” rather than a “production
funetion.” _

In some situations the term “function” will not be the one most suited
to describe the set of alternative modes of efficient utilization of tech-
nologieal possibilities and available resources toward the stated objec-
tive. We shall therefore most often use the term “efficient point set
in the commodity space,” a concept which will be further defined in
Sections 4.2 and 5.2 below and which includes the notion of a trans-
formation funection as a special case.

1.3. Static and dynamic models. To avoid an accumulation of com-
plications, and in deference to a venerable tradition in eeconomic litera-
ture, we shall confine the present study to a static model in which the
elements of technology, scarcity, objective, and choice are formalized in
terms of variables and relationships thought of as remaining constant
during an indefinite period. A dynamic model is formulated elsewhere
in this volume by Dantzig [11].

1.4. The technology: commodities and activities. The formalization of
the technical posgibilities that we shall use involves only two basic con-
cepts, the commodify and the activity. Each commodity is assumed to be
homogeneous qualitatively and continuously divisible quantitatively.
Commodities inelude prémary foctors of production, such as labor of
various kinds, the use of land of various grades, including land giving
access to mineral resources; intermediate products, such as coal, pig iron,
steel; and final products the production of which is the objective of the
economy under study. We shall denote by

(L.1) Yn n=1,---,N),

the total net outpuf of the nth commodity in the produetive system con-
sidered. A negative value of y, signifies a net input of the nth com-
modity. Each y, represents a rate of flow per unit of time,

In our static model an activity consists of the combination of certain
qualitatively defined commeodities in fixed guantitative ratios as “in-

3 3ee for instance Oskar Lange [1942].
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puts” to produce as “outputs’ certain other commodities in fixed quanti-
tative ratios to the inputs. The kth activity is defined by a set of
coeflicients,

(1.2) nk (n=1,---,N),

indieating the rate of flow per unit of time of each of the N commodities
involved in the unit amount of that activity. Negative coefficients an;
indicate that the commodity involved is used up by the activity; posi-
tive coefficients, that the commodity is produced. A value g, = 0 indi-
cates that the nth commodity is not involved in the kth activity.

Two basic assumptions are associated with the notion of an activity:
The first of these is divisibility: we assume that each activity is eapable
of continuous proportional expansion or reduction. If any nonnegative
scalar quantity, zz, is selected to be the amount or level of the kth activity,
the corresponding commodity flows are assumed to be given by

(1.3) Lplnk (n = 1., N)

This assumption implies the conscious neglect of all indivisibilities in
production. It also implies constant returns to seale for each individual
activity.

The second assumption is additivily: we assume that any number of
activities can be carried out simultaneously without modification in the
technical ratios by which they are defined, provided only that the total
resulting net output, y., of any commodity, whenever negative, is
within the limitations on primary resources to be discussed in Section
1.6. The joint net output of any commodity from all activities then
equals the sum of the net outputs of that eommodity from the individual
activities. This assumption, taken together with the previous one, im-
plies the neglect of economies or diseconomies of scale for the productive
system as a whole (except diseconomies resulting from scarcity of primary
factors).

The two assumptions can be fused in the statement that we postulate
the existence of  finite set, of basic activities, represented by vectors

(158

(1713
(1.4) ae = | - )

ANk

such that any possible state of production can be represented by a linear
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combination of basic activities with nonnegative coefficients, z;. The
resulting net outputs, ¥, can be written as

K
(15)  ¥Ya= 2 Gmx, w20 (m=1,---,N;k=1,.--,K).
k=1 /

The activity vectors (1.4) can be adjoined to form the technology matriz,
or briefly the fechnology

Q11 iz WK

Az Q29 1734
(1.6) A=

ay1 4Ng2 - ANK

1.5. Location and transportation. In principle, flows of technically the
same commodity in two different locations represent two different com-
modities. Transporting the commodity from P to @ is an activity or
set of activities to which the commodity in P is an initial input, that in
@ a final output. A particular model defining transportation activitices
is discussed in Chapter XIV. Whether and to what extent in any
particular application transportation and location are explicitly recog-
nized in this manner depends, of course, on the purpose of the analysis
and the degree of detail and refinement required. The problem of an
optimal degree of aggrepation of activities and commodities is outside
the scope of this study.

1.6. The limitations on primary factors. "We shall assume that certain
commodities, called primary factors, can be made to flow into the econ-
omy from pature (or from the “ocutside world”), at a rate, possibly
limited by a constant, »,, depending on the commodity, that is,

(17) M = Ya-

The constant 7, is algebraically smaller than the rate of flow y,, because
a net inflow into the economy is represented by a negative number y,,
which cannot exceed the corresponding bound %, in absolute value. Cer-
tain commodities, such as water and air, may be available in greater
abundanece than required for any conceivable objective of the economy.
If this can safely be asserted before analysis, the commodity in question
is certain to be a free good, which does not give rise to any restrictions
on allocative decigions. Its perfunctory role in the model can be ex-
pressed by writing 7, = —<, or the commodity can be omitted from
the model (i.e., from all activities in which it is physically involved).
Whenever its character as a free good in all eircumstances is subject to
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doubt before analysis, the commodity and the effective bound #, on
its availability should be incorporated in the model.

While a commodity could not be a primary factor without being an
input to at least one activity, there is no reason why a primary factor
could not also appear as cutput of some other activities.

1.7. The objective of allocative decisions. In order to cover a wide
variety of cases, we ghall assume as little as possible with respect to
the aims pursued by the economy. We shall postulate only that there
is a specified set of commodities, to be called desired commodities, which
are required by the economy in the following sense: an addition to the
total net output of one or more of the desired commodities which does
not entail a reduction in the net output of any other desired commodity
is regarded as an improvement. As long as such improvements are
possible, the allocation of resources in production is not regarded as
efficient.

It is clear that this postulate provides only a partial ordering of points
in the space of which the coordinates are flows of desired commodities.
No preference is expressed between alternatives 4 and B if A involves
more of one desired commodity, B more of another. - We can therefore
not expect ocur model to produce a unique solution to the allocation
problem. The postulate will prove sufficient for our more modest aim:
to study the set of all points in the desired commodity space resulting
from efficient modes of production.

It should be readily admitted that our assumption regarding the valua-
tion of desired commodities ignores the possibility of saturation. To
make allowance for saturation would require much more detailed specifi-
cation of consumers’ preferences than it is our present purpose to make.
The efficient point set obtained without regard to saturation will be
relevant in all those portions of the space of desired commodity flows
in which saturation is actually not reached for any desired commodity.

As discussed further below, the desired commodities may include pri-
mary factors. All desired commodities which are not primary factors
will be called final commodities. We can therefore specify 5, = 0 in
(1.7) for each final commodity.5

+ An assumption whereby saturation in one commodity arises at a lovel of flow
independent of the flows of other commodities could still be accommodated in our
model st small cost in mathematical complication but would add very little to the
degree of realism attained.

5 Such a restriction disregarda the fact that certain effects or conditions of produc-
tion are negatively valued, such as smoke pollution. We could easily allow for this
circumstance and still maintain the formal applicability of the objective as stated
above by introducing these effects as negative cutputs (ie., inputs) of “desired”
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'Depending on the context, we shall follow two alternative procedures
if the objective places a valuation on a commodity which is also available
in nature. To consider an example: the services of land not used in
production may be desired for reereational purposes. The first alterna-~
tive is to treat land as a primary desired commodity. In this way, our
efficiency criterion will preseribe maximization of the (negative) net
output, or, what is equivalent, minimization of the (positive) net input,
of services of land in production. We shall follow this procedure in
Section 4, where we do not wish the analysis to be complicated by explicit
availability bounds 5, such as cccur in (1.7).

Alternatively, we may attach no desirability to the services of land
as such but introduce a ‘‘reservation” activity whereby the primary
commodity “services of land’’ as such can be converted into an “equal”
amount of a new final commodity, “recreational land servieces.” The
minimization of the net input of land services in production is now
induced by the requirement that land serviees allotted to production
and reservation activities together are limited by the total available
aceording to relation (1.7). By this semantic device we transfer the
desirability property that any primary factor might originally possess
to a final commodity introduced for that purpose. If, either to begin
with, or through the application of this deviee, no primary factors are
at the same time desired goods, then all desired commodities are final
commodities, and we shall use the latter term in that case. This alter-
native is followed in Section 5, where the effect of availability limitations
on primary commodities is studied explicitly.

1.8. The treatment of labor. In some models considered by Leontief
le.g., 1941] and von Neumann [1937, 1945], labor has been treated as
the output of an activity, of which the consumption of various eom-
modities constitutes the set of inputs. The model thus becomes a closed
one. We intend to study an open model which does not specify the
structure of preferences between the various desired commeodities or be-
tween consumption and leisure.

In our model, therefore, manpower i a primary factor like land, and
the same two alternatives discussed with regard to land are open to us.
One possibility is to identify labor with manpower, and treat it, like
smoke pollution, as a negatively desired commodity which is also a pri-
mary factor. Alternatively, we can treat manpower as a primary factor,
not desired in itself, and fowing into the economy at a rate bounded by

commeadities, of which the algebraic increase (i.e., the absolute reduction) is deemed
desirable. Since setting up such a category of commodities would complicate the
notations rather than the reasoning in what follows, we have refrained from doing it.
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the given negative number 7,, if n refers to manpower. Besides being
used in all productive activities, manpower is then introduced as an
input of the activity “recreation,” of which the sole output ¢ is the posi-
tively desired commodity “leisure.”

In a more refined model, we may treat a given amount of unskilled
manpower as a gift of nature, and manpower of various skills as the
outputs of a variety of educational and training activities. The con-
sumption aspects of these activities can be recognized by stipulating
that, besides skilled manpower, these activities also produce “‘educational
services” which are desired for their own sake.

1.9. Intermediate commodities. 1f the sets of primary factors and of
desired commodities do not between them cover all commodities, the
remaining commodities will be called intermediate commodities. Each
of these is simultaneously an input of at least one activity and an output
of at least one other activity. This necessary property of all inter-
mediate commedities may, but need not, also be a property of individual
primary or final commodities.

It may be thought that these statements ignore the existence of waste
products. In fact, waste products can be disregarded if they are not
used even in part for further produection or consumption and provided
that their disposal does not require the use of other commodities.
Otherwise, waste products can be regarded as intermediate commodities
by introducing a disposal activity, in which they appear as inputs and
with which no useful ” outputs are connected. This treatment is desir-
able in particular if it is not known in advance whether, or in what part
of the space of desired commodity flows, the commeodity involved will
actually come out of the analysis as a waste product.® In this respect
the position of possible waste products in the analysis is similar to that
of possible free goods.

For intermediate products we can specify in (1.7)

(1.8) 7. =0  if n refers to an intermediate commadity,

because negative net flows are not compatible with the static assumption
of constant flows during an indefinite period. However, the incorpora~

¢ The effect of recreation on the productivity of manpower when applied in produe-
tion ean be taken into account, if desired, by combining recreation and productive
labor into one activity and regarding different percentages of time devoted to recrea-
tion as giving rise o different activities.

7 The meaning of the term “useful” will become clear below, when prices are intro-
duced, if we define “useful” ag “positively priced.”

8 In the early days of the oil industry, kerosene was the main desired product and
gasoline was disposed of by burning,
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tion of disposal activities in the model makes possible a sharpening of
the restriction (1.7). Instead of 0 £ y,, which follows from (1.8}, we
may write

(1.9) Yp =0 if n refers to an intermediate commodity.

This ean be understood to mean that, whenever an “intermediate” ¥,
would otherwise turn out best to be positive, we undertake to reduce it
to zero by the appropriate amount of a disposal activity. This does not
really restrict allocative decisions beyond what is already implied in
(1.7), except (and rightly so) in the case where the disposal activities
necessary to insure (1.9) consume other useful commodities.

1.10. Summary of the commodity classification. The following table
summarizes the commodity classification that has been introduced.

Commodity Desired in Itself | Not Desired in Itself
Not available in nature || Final Intermediate
Available in nature Primary desired | Primary not desired

The category “‘primary not desired” is assumed empty in the diseussion
of Section 4. The category “‘primary desired” is assumed empty in
Section 5 (or is rendered empty by suitable construction; see Section
1.7).

1.11. Managerial choice. We shall define managerial choice as the
selection of nonnegative amounts (or levels) xy, « -+ , zx for all possible
activities. This choice is here studied in the abstract. TFor the time
being, we do not inquire whether it is exercised by one entrepreneur or
manager, by a number of independently acting entrepreneurs, by a publie
planning body, or by a combination of these. A study of the formal
properties of optimizing choice is believed to be a useful preliminary to
the study of the effectiveness of alternative social and institutional ar-
rangements in realizing or approaching optimal choice. We shall touch
upon the latter question, though still in an abstract fashion, in Section
5.12.

Managerial choice is exercised subject to the restrictions (1.7) and
(1.9) and is assumed to be guided by the objective formulated in Section
1.7. We have already indicated that in general more than one state of
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production can result from the pursuit of that objective. The main
purpose of our discussion 1s to study the set of all productive states that
realize the broad objective formulated.

1.12. The role of capital in the model. The mode! to be studied implies
a state of saturation with regard to reproducible capital. Among the
limitations (1.7) on primary resources we have not imposed any limita-
tions on the amount of accumulated products of past flows of primary
resources used to increase the productivity of present flows. The reason
lies in the plan of analysis. Any such limitation, to make sense in a
static model, would have to be imposed on the value of capital rather
than on the amounts of specific types of capital equipment. Such a
limitation can therefore not be introduced until after the analysis has
supplied us with a value concept. In the present chapter, then, the
criterion of efficiency in production does not regard a high initia] require-
ment of reproducible capital in a particular method of production as in
any way & disadvantage of that method. Of course, the consumption of
capital equipment through wear and tear may be expressed by the input
coefficients of productive activities.

1.13. Summary of results. The model developed in this chapter builds
on the work on linear production models referred to in the introduction
to this volume. As was said already, we are here concerned with an
open model in which the nature of demand is specified only to the extent
that an efficiency objective in the space of desired commodities is adopted.
Limitations on primary factors are introduced explicitly, but circularity
in the use of commodities in production is allowed for. It is an alloca-
tion model independent of the concept of a market. However, a price
concept applicable to all commodities is derived from the requirement of
efficient allocation (Sections 4.3-4.7). The ratios between these prices,
whenever determinate, are marginal rates of substitution in efficient
production, wherever such substitution is possible (Sections 4.8-4.10).
In terms of these prices, whether uniquely determinate or not, the two
conditions of nonpositive profits on all activities, and of zero profits on
all activities engaged in, are found to be necessary and sufficient for
efficient use of resources (Section 4.7). These prices may be called
efficiency prices in that, if an opportunity to trade with an outside world
at these prices is presented, no gain in efficiency can result from the use
of that opportunity (Section 5.11). These prices ean also be used as a
device to decentralize allocative decisions within the productive system
studied (Section 5.12). Sections marked by an asterisk (*) are the more
technical ones and can be passed over by those interested in results rather
than in methods of proof.
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2. MaTHEMATICAL ToOLS

2.1. The two equivalent definifions of convex polyhedral cones. We shall
make use of the theory of convex polyhedral cones, hercafter to be re-
ferred to briefly as “cones.” Such a cone ean be defined either as the
convex hull of a finite number of halflines out of the origin (sum defini-
tion) or as the intersection of a finite number of halfspaces whose bound-
ing hyperplanes pass through the origin (intersection definition). We
shall use the properties, summarized by Gale [XVII], which depend on
the equivalenee of these two definitions. Wae shall also use a number of
properties, developed by Gerstenhaber [XVIII] in connection with the
present investigation, most of which follow directly from the sum
definition.

2.2. Matriz representation of cones. The halflines (a@)) entering into
the sum definition of a cone (4) can be uniquely defined by a set of
nonvanishing vectors ag,), which, again, can be adjoined as the columns
of a matriz A. In the discussions by Gale and by Gerstenhaber, the
explicit representation by vectors and matrices disappears as soon as a
minimum of basic properties of cones have been established, because
after that no suppert from matrix properties is needed. In the present
chapter, matrix representations have been maintained, perhaps at the
cost of mathematical lucidity, but perhaps also in the interest of easier
understandability by those accustomed to dedling with systems of linear
equations in terms of properties of matrices. Explicit use of matrices
will also keep before the reader the relationship between column vectors
and discrete activities that represent well-defined pieces of technological
knowledge and experience.

Differences in notation and to some extent even in terminology flow
from this choice. The eone consisting of all vectors ¢ satisfying (1.8)
or, in matrix notation,

(21) y=AﬂT, xkgo (k—__]-;“'rK);

is denoted by (A) and is said to be spanned by the column vectors ay
of A, or simply by the matrix 4, rather than by the halflines (a,) defined
by these vectors. Similarly, a frame of A, or of (4), is here a submatrix
of A comprising a set of vectors ag, defining the halflines (a,) that
constitute a frame as defined by Gerstenhaber [XVIII, Definition 28].
But the underlying concept of frame is the same: a set of elements,
whether vectors or halflines, in the sum definition of a ¢one, the omission
of any one of which makes the cone “shrink.” The matrix representa-
tion involves some arbitrariness in the notation for lineal cones (ie.,
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cones containing a nonvanishing vector e along with its negative —a),
because the frame of such a cone ig not unique, even if considered as a
set of halflines. Inm particular, we denote the entire space by

(2.2) (£ =(-I D,

where I is the unit matrix, although other frames could serve the same
purpose. Similarly, we occasionally denote the dimensionality space of
a cone (4) [Le., the “smallest” linear space containing (4)], by

(2.3) (£4) = (—4 A).

Finally, the reader should be cautioned that the 4 sign is used in two
different meanings. When connecting vectors, denoted by a, --- , p,
g, - ,%1, - ,ormatrices, denoted by A, B, --- ,[4 B],---,[£A4],

+« , the + sign denotes ordinary vector or matrix addition. When
connecting cones, it denotes the summation of cones, expressed by

(2.4) (4) + (B) = ({4 B),

also denoted (A  B), which should again be distinguished from the union
of (A) and (B) denoted by {A) U (B). The interseetion of (4) and
(B) iz denoted by (4) N (B), while {4) D (B) or (B) € (4) denotes
that (B) is contained in (A).

2.3. Polar and negative polar cones. In order that prices of scarce
commodities shall be positive, it is eonvenient here to work with the
negative polar (A}~ of a cone (A), which is the negative,

(2.5) (A4~ = (=47,

of the polar cone as defined by Gale. It may therefore be useful here
to write down the two definitions, together with the definition of the
orthogonal complement (A4)*.

Polar (A)T: pe(Ad)T whenever p’a = Oforalla e (4),
Orthogonal
(2.6) complement (4)': ¢e¢(4)* whenever ¢a = 0 foralla e (4),
Negative
polar {4)": re(A)” wheneverr'a < Oforallee(4),

where e denotes “is an element of,” and p’a is the inner product of p
anda. Wehave (4)* = (4)~ and therefore = (4)}* if and only if (4)
is a linear space. The properties of (4)7 stated by Gale can easily be
translated by (2.5) into similar properties of (4)~, Weuse A¥, AL, A~
to denote frames of the corresponding cones.
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2.4. Dimensionality, Linealily, interior, and relative inierior. Besides
the dimensionality space (2.3), we shall use the concept of the lLineality
space,

2.7) (4) 0 (—4),

of a cone {4), which is the “largest” linear space contained in it. The
dimensionalities of these two spaces are called the dimensionality and
the Lineality of (A), respectively, to be denoted

(2.8) dim (A4), lin (4).

The dimensionality of (A) equals the rank of 4. A cone is called lineal
if its lineality is one or more. Hence a lineal cone is & cone containing
an entire line through the origin. A cone is called solid if lin (4) equals
the dimensionality N of the space in which it is considered. The cone
then fills that entire space.

If dim (A) = N, then {(A) has inierior poinis [i.e., points possessing a
neighborhood contained in (A4)], and, if lin (4) < N, noninterior or
boundary points. If dim (A) < N, (A) consists entirely of boundary
points by this topological definition, but we can define the relative
interior of (4) as the set of all points interior to {(4) in relation to its
dimensionality space, thus identifying the relative interior of an ¥-dimen-
sional cone with its interior. The relative interior of any cone (4) is
denoted by JA(. If A is a frame of (4), then )A( is the set of all points
y that can be represented by the vectors {see XVIII, Theorem 1]

2.9) y = Az, 25 > 0 k=1,---,K).
The remaining points of (4) make up the relative boundary of (4).

2.5. Inequalities between vectors. As stated in Section 2.1, a cone ean
be represented by a set of linear homogeneous inequalities on its vectors.
We shall understand inequalities between vectors a, b, - - - as applying
to all their components, as follows:

a > bmeans an > by forall n. positive.
an 2 bpforalln, and| 1f p = Q. L
(2.10) ja = b means . ? i semipositive.
a, > by, for some n. | @ iscalled
a = bmeans a, = b, foralln. nonnegative,

The first and third of these relations can synonymously be denoted
a —be)I(, a —be(I), respectively. Vectors, a, b, - -+ , are regarded
as column vectors, their transposes, o/, b, --- , as row vectors. The
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terms ‘‘vector” and “point’” are used interchangeably, except that
“vector” is used wherever matrix operations are involved.
We use the symbol = to express equality by definition.

2.6. Coordinate cones. We shall frequently deal with cones spanned
by a frame consisting of a set of vectors selected from the matrix

(2.11) [T 1],

comprising all unit vectors along the positive and negative coordinate
axes. Such cones will be referred to as coordinate cones. 1t is easily
seen that the polar of a coordinate cone is a coordinate cone and can be
determined by applying to each coordinate separately the rules for
determining the polar of a cone in one-dimensional space, which we state
here for the negative polar:

(212) O~ =D, O~=(D, (1)~ =), (F)" =0

Hence, if (C) is a coordinate cone, €' a submatrix of (2.11), then ()™
is spanned by those vectors of (2.11) which are not included in C.

It follows that a coordinate cone can be equivalently defined by a set
of inequalities,

(2.13) Mntln 2= 0,

where for each n the constant \, is given one or more of the values 0,
1, —1. It will be primarily a matter of convenience whether in any
particular case coordinate cones are represented by a set of inequalities
(2.13) or by a frame matrix selected from (2.11). Finally, if C; and
€2 are submatrices of (2.11), then

(2.14) (€C1) N (Cy) = (C3),
where C3 consists of all vectors of (2.11) which are common to €y and Co.

2.7. Displaced comes. Occasionally we shall use point sets obtained
from a cone by adding a constant vector v to all its points. Such a set
will be called a displaced cone and denoted (4 | v), where the vector v
will be called its vertez, and the cone (A) from which it is derived will be
called the generating cone. A displaced cone is not a cone, except when
the vertex vanishes.

3. FunpAMENTAL PROPERTIES OF THE TECHNOLOGY

3.1. Constant amounts of activities. We reiterate our assumption that
the levels zx, k = 1, --- , K, of all activities remain constant for an
indefinite period. This implies that the net flows y,, n =1, --- , N,
of all commodities, as given by (1.5), are also constant over time.
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3.2. The set of possible points. A point y with coordinates 4, «+- ,
yx In the commodity space is called possible if there exists a set of non-
negative amounts x;, --- , xx of the respective activities of which the
joint effect is the net outputs iy, - -+ , yn of the respective commodities.
This is expressed mathematically by

DerFNITION 3.2: 4 point y in the commodity space is called possible in
o technology A if there exists a point x tn the activity space solisfying

3.1) y = Az, z20.

This definition lmits the vector x to the convex polyhedral cone (1)
in the z-space, which is the sum (convex hull) of the positive coordinate
halftines (), k = 1, --- , K, and will be called the (closed) positive
orthant. The linear mapping of the z-space onto the y-space (or a part
thereof) defined by (3.1) transforms each halfline (iy)) into the halfline
(@) based on the corresponding column of the technology matrix A
and preserves convexity and hence also the sum operation on cones. It
follows that (3.1) is equivalent to

(3.2) ye(4),

which expresses that the possible point set is the convex polyhedral cone
(4) spanned by the technology matrix A.

Possibility is a technological concept. A possible point may be un-
attainable because of the restrictions, (1.7) or (1.9), on primary, inter-
mediate, or final commodities. We shall therefore use the term attatnable
point set for that subset of the possible point set whose peints can be
realized within those restrietions (1.7) and (1.9) that are imposed in any
particular case. Attainability is thus a concept involving both tech-
nological and economic elements since it iz defined with reference to
availability limitations of commeodities in nature.®

3.3. Fundamental postulates concerning the iechnology. Before in-
vestigating the application of the notion of productive efficiency intro-
duced in Section 1.8 to the set of possible points, it will be useful to
formulate mathematical conditions on the technology maftrix 4, to ex-
press certain properties of production which are in some sense funda-
mental. It is not claimed that in all uses of models of production these
properties should be present. Rather, it is believed that in a broad
class of cases it will be ugeful to employ models having these properties.
The order in whiceh these properties are introduced is suggested by reasons
of mathematical exposition.

* An element of valuation has also crept into the notion of attainability since
(1.9) also precludes positive outputs of intermediate products, which may well be
possible within the availability limitations. I have not found a suitable term which
would also suggest. the presence of this element in the concept.
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It will be convenient to stipulate in advance that
(3.3) dim (agy) = 1 (k=1,---,K),

a trivial eondition which excludes the possibility of an “empty’’ activity
that does not involve any commodity.

3.4. Irreversibility of production. If labor is regarded as a primary
input limited in total amount, rather than as the output of a “consump-
tion” activity, the empirical faet that labor is an input for all productive
activities entails that the labor row of 4 contains only negative coeffi-
cients. If more than one kind of labor is distinguished, of which one is a
primary input, the others intermediate products, the elements of 4 in
the primary labor row are negative or zero. However, in any column
(activity) with a zero element in that row, primary labor enters in some
sense indirectly as the input to training activities (other eolumns) of
which the output is an input to the activity in question. Since this
indirectness may involve the telescoping of several training activities,
it is desirable to specify mathematically what property of A is involved
in what may be called the primary-input character of labor in all ac-
tivities. While in the following postulate labor is not explicitly men-
tioned at all, the remarks just made about labor seem to provide one
sufficient justification for its adoption.

PosTuraTE A: It is ¢mpossible to find a set of positive amounts of some
or all activities, of which the joint effect is a zero net output for all com-
modities.

Mathematically, the postulate says that there exists no vector z
satisfying

3.4) y=Az =0, z>0.

The term “irreversibility’” for this property is justified as follows. For
any given vector,

(35) = [:t] R T Q:K],

satisfying (3.4) there exists a pair of integers, ng, ky, such that

(3.6) CrgkaThy 7 0,

because (3.3) preciudes the vanishing of an entire column of 4, Define

3.7) Ty =0r o Oy Ty Opyy -~ O] >0,

, .
Tgy = [T1 -7 Tpe—r Oy, Tpep1 **+ TE] = 0,
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in which the inequalities are consequences of (3.4) and (3.6). If we
define further

(3.8) vy = Az,  yo = Az,

we have, from (3.4) and (3.7),

(3.9 0=Az =A@y +2@) =¥ + Ye)n
and, from (3.6), (3.7), (3.8),

(3.10) vy # 0,y #0,

the second inequality following from the first by (3.9). Thus, if (3.4)
has a solution z, it is possible to find two activity veetors, z() and z(),
such that the net output resulting from one of them exactly offsets the
net output brought about by the other. To exclude this possibility ia
equivalent to saying that no mode of production is reversible.

The foregoing argument shows that, if a solution z of (3.4) exists, the
possible cone (A) is lineal, Conversely, it follows from the definition of
lineality that, if (4) is lineal, there exist vectors

(8.11) za) 2 0, xemy = 0

such that the quantities (3.8) derived from them satisfy (3.9) and (3.10),
and hence

(3.12) S r=rw t I
is a solution of (3.4). We have thus established the following theorem.

TuroreM 3.4: The trreversibility postulate, A, is equivalent to the condi-
tion that the cone (A) of possible points is pointed (nonlineal).

Figure 1 illustrates five simple cases, involving three activities and
two commodities only. Tn Cases T and V production is irreversible. In
Cases 11, ITI, and IV production is reversible. The diagrams are drawn
in the two-dimensional commeodity space. The activities are represented
by the column vectors awy, k = 1, 2, 3, of A. The circular ares serve
to indicate the possible point set, which is an angle of either 360° [Case
II1, lin (4) = 2], or 180° [Cases IT and IV, lin (4} = 1], or less than
180° [Cases I and V, lin (4) = 0.

3.5. Impossibility of the Land of Cockaigne. The next postulate, al-
though mathematically independent of the first, is related to it in its
economic interpretation. To common sense it appears “‘even more
true‘J!
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Posrurate B: It is émpossible to find a set of positive amounis of some
or all activities, of which the joint product consists of a positive net output
Jor at least one commodity, without causing a negative net output for ot least

one other commodily.

This postulate admits Cases I and IT but rules out Cases ITL, IV, and V
of Figure 1 because the possible point set contains points of the positive

quadrant in these cases. A comparison with the cases admitted by
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Postulate A shows the logical independence of the two postulates.

Mathematically, Postulate B says that there exists no vector z satis-

fying
(3.13)

y=A4z >0,

xz 0.



CHAP. 111] ANALYSIS OF PRODUCTION 51

The equivalent condition in terms of convex cones is
(3.14) AN =0o0.

It follows immediately that (4) iz not solid and is therefore eontained
in » halfspace. It has been proved by Gale [XVII, Theorem 5] that
(3.14) further implies that (A) has a positive outward normal % on the
vertex. Sinece the same method of proof will be used below in more com-
plicated cases, we recall the reasoning here. By taking the negative
polar cones of both sides in (3.14) we obtain, using property (c) of
Chapter XVII, Section 2, '

(3.15) A"+ (=1) = (D).

By a theorem proved by Gerstenhaber [XVIIT, Theorem 13], it follows
from (3.15) that (A_)— contains an interior vector of —(—1I) = (7}, the

b Yo
bE)
)
A 2y
—% N 1
\ N g
o Prg
2@
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closed pesitive orthant. In view of the definition (2.6) of the negative
polar, this is equivalent to saying that (4) possesses a positive normal
on the vertex, that is, a vector h satisfying

(3.16) W4 =0, k> 0.

If Postulate A is also satisfied, (4 ) is pointed and [by XVII, Theorem
3] (4)~ has the dimensionality N of the space. IHence there exists a
vector h interior to both (I) and (A)~. It follows from a theorem by
Gerstenhaber [XVIII, Theorem 17, see second part of the proof] that
(A) possesses a normal A on the vertex satisfying

3.17) A <0, h>0.
Conversely, if (3.16) or (3.17) holds, we have
(3.18) By £0 forall ye(d) andsome k>0,

and Postulate B is satisfied. Furthermore, if (3.17) holds, (4) is pointed,
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and by Theorem 3.4 Postulate A is satisfied. These results can be gum-
marized as follows.

THEOREM 3.5.1: A necessary and sufficient condition that Postulate B
(¢mpossibility of Cockaigne) be satisfied is that the possible cone (4) pos-
sesses a positive normal b on the vertex. A necessary condition for this is
that (4d) is nonsolid.

TeEOREM 3.5.2: A necessary and sufficient condifion that Postulates A
and B are both satisfied is that the possible cone (A) is pointed and possesses
a positive normal h on the vertex.

For purposes of comparison with criteria for the possibility of produc-
tion, to be discussed in Section 3.6, we note that, as a corollary of
Theorem 3.5.1, Postulate B implies that the cone

(3.19) (-1 4)

is nonsolid, because it possesses a normal h. Likewise, as a corollary of
Theorem 3.5.2, Postulates A and B together imply that the cone (3.19)
is pointed. Conversely, Postulates A and B are satisfied if (3.19) is
pointed, because then there exists a vector A such that

(3.20) Wi—1 4]>0,

which is merely another way of writing (3.17). We thus have the follow-
ing criterion equivalent to that of Theorem 3.5.2:

TuroreM 3.5.3: A necessary and sufficient condition that Postulates A
and B are both salisfied is that the come (3.19) is poinied.

3.6. The possibility of production without intermediate commodities.
For the formulation of Postulates A and B, it was not necessary to
specify which commodities are desired products and which are primary
factors. Rather, Postulate B expresses the necessity for the availability
of primary factors, without identifying them with particular rows of A.
In order to express in a postulate that positive production of one or
more desired commodities is possible, it is necessary to specify in advance
the commodities of which net inflows are made available by nature.
For simplicity we shall first assume that every commodity is either pri-
mary or desired, but not both. This rules out intermediate commodities
(Section 1.9). It also permits us to refer to the desired commodities
as final commodities (Section 1.7). We thus presuppose a partitioning,

Yii Ay
(321) y= [ m] 3 A= [ lﬂ] P Ytin = Agin®, Ypri = Aprix;
Ypri Apri
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of the rows of y and A, reflecting the classification of commodities, given
in advance, into final and primary commodities, with

(3.22 fin) Yiin = 0,

(3.22) ) -
(3.22 pl‘l) Yori = Tpris Rpri < ;J:

as the restrictions defining the attainable subset of the possible point
set (4).

In order to express the possibility of production we may wish to
impose on the vector ygn the strong requirement, that positive production
of all final commodities is possible,

(3.23) Yein > O.

Alternatively, we may leave that question to be answered by analysis
and insist only on the weaker requirement that it is possible to produce
at leagt one commadity,

(3.24) Yiin = 0.
We thus have the following postulates: %

PosTuLaTe C; (strong): It is possible fo find a set of positive amounts
of some or oll activities of which the joint primary factor requirements are
within the bounds set by nature and of which the joint product consisls of
positive net outputs for all desired commodities.

Posturate Cs (weak): Il is possible to find a set of positive omounts of
some or all activities of which the joint primary foctor requirements are
within the bounds set by nature and of which the joint product consists of
nonnegative net outputs for all desired commodities, tncluding a positive
net output for af least one such commodity.

To illustrate, let ; in Figure 1 correspond to a final commodity, y2
to a primary factor of which a flow of one unit is available. Then all
five cases in Figure 1 satisfy both the weak and the strong postulate
because the feasible point set includes in each case points with positive
values of ¥, above the line gy = —1.

A more-ingtructive illustration is obtained if we interpret Figure 1
differently as follows. Let there be two final commodities with net
outputs 1 and s, and one primary factor with net output ys, limited by

(3.25) Yz Z m3 = —L

] am indebted to Herbert A. Simon for a discussion of these postulates. A
gpecial case of the strong postulate has been formulated by Hawkins and Simon
[1949].
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Let this primary factor be required for each of the three activities, and
normalize each column of the coefficient matrix A by

(3.26) az, = —1 k=123
The matrix can then be denoted
a1y a(g) G(3)
3.27 A= [ ]
(3.27) 1 -1 1 I

where the a i) are vectors with two elements. Let Figure 1 now represent,
in five possible cases, the configurations of the vectors ay, in the space

of the vector yp, = [yl] of final commodities, Then Cases I and II

Y2
are ruled out by either Postulate C; or Cq, because no achievable point
is found in or on the boundary of the positive quadrant. Cases III,
IV, and V are admitted by cither postulate. Figure 2 shows another
case (VI) admitted by both postulates, and a borderline ease (VII)
admitted by (the weak) Postulate Cp but excluded by (the strong)
Postulate Cy.

It should be added that if, in the present interpretation of Figures 1
and 2, we consider the attainable point set in the desired commodity
space as limited by (3.22 pri) [i.e., in this case by (3.25)], but without
restricting the signs of yy, ¥», by (3.22 fin), that space is no longer repre-
sented by an entire angle, but instead by a convex polygon spanned on
the origin and the end-points of the three vectors aq), a), ), as sug-
gested in Figure 2 by dotted lings. The available primary factor input
1s fully used in any point on a dotted line, and partially used in any point
in which the origin enters with a positive weight. However, a negative
net output of a nonprimary commodity is possible only temporarily, if
there is some stock to draw upon, and is impossible in a static model.
If we include the requirement (3.22 fin), or y; = 0, %3 = 0, in the defini-
tion of the attainable point set, that set contains only the origin in those
cases in Figure 1 ruled out by the strong postulate and consists only of a
line segment in Case VII of Figure 2.

Let us now translate the postulates in mathematical terms. Both
postulates require that the possible cone (4) contains a point y such
that ¥ > 0. In terms of convex cones this can be expressed in the
condition

(3.28) (Bsin) = (Agin) N (Tgn) % 0.

Both postulates require further that the coordinates y,; of this point y
satisfy the availability restrictions in (8.22 pri). It is easily seen that
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the latter requirement does not place any restriction on (4). For, if
y is a point such that yey, € (Biin) 25 defined in (3.28), but which does not
satisfy (3.22 pri), we can always find a positive scalar A small enough
such that My satisfies (3.22 pri).

Since (the weak) Postulate Cy contains no other requirements than
those stated, (3.28) is equivalent to it. The strong postulate requires
in addition that (Ag,) contain an interior point of (I5,). Using Theorem
13 of Gerstenhaber [XVIII], and in particular the statement following
ite proof, we obtain:

TueoreM 3.6.1: Postulale Cy (the strong postulate) of the possibility of
production 1s equivalent to the requirement that the cone

(3.29) (—ZTtin  Atin)
be solid.

We shall state without proof a criterion for the weak postulate only
in the somewhat simpler case in which the irreversibility Postulate A
is satisfied.! In this case, using the definition of a lineal cone given in
Section 2.4, we can obtain from (3.28):

Tarorem 3.6.2: If Postulate A (the irreversibility postulale) is salisfied,
Postulate Cs of the possibility of production is egutvalent to the requirement
that the cone (3.29) be lincal.

3.7. The possibility of production with intermediate commodities. The
situation is somewhat more complicated in the presence of commodities
which are neither desired nor given by nature. In this case, the vector y
is partitioned according to

Ytin
(3.30) Y=Y},

.. Yori
and the restrietion (1.9) or

331) Yint = 0

on the net output vector of intermediate commodities must be added to
(3.22). This leads to the following possibility postulates:

Posturare D (strong): It is possible to satisfy Pestulate Cy tn a man-
ner tnvolving zero net oudpuls of all intermediafe commodities.

PosturaTe Dy (weak): It is possible to satisfy Postulate Cy in 4 man-
ner involving zero net outputs of all intermediate commodities.

1 T'o be precise, we are using only the pointedness of (Ara), not that of (4).
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*3.8. Criteria for the possibility of produclion with intermediate com-
modities. We note that, again, the limitations (3.22 pri) on primary
factor availsbilities do not restrict the technology matrix 4 under either
postulate. Exploring now in particular the mathematical contents of
Postulate Dy, we require only that there exist a solution ysin, ¥int, 2, of

(3.32) * Ytin = Az > 0, zz 0,
and
(333) Yint = Az = 0.

In the notation of convex cones we require that there exist a vector ys,
such that ‘

Atin Yiin
T G
( ) Ay 0 i

Since it foliows from the sum definition of cones that (A) D (B) implies
(4 CO)> (B (), (3.34) implies

—Itin  Asin —Itin  Yin
335 ( ) D ( ) ' in > 0.
8:35) 0 A 6 0 v

I in Theorem 14 of Chapter XVIII we let A stand for (—Ig,) and B
for (—yun), we see that the cone at the right in (3.35) congists of the
entire subspace of the “fin’’ coordinates. Henee, for Postulate Dy to
be satisfied, it is necessary that

~Itin Aiin +Ttin
(7T A (270
( ) 0 Aint 0

We shall show that this condition is also sufficient.
If (3.36) is true, any vector yf, can be represented by

W —Iny Agn] {2
3.37 [‘]=[ ][}, 20, =
( ) i) 0 A'mt & ?s res 0,

which is equivalent to

(3.38) Yoo = —2+4 Asur, 220, 220,
with « satisfying (3.33). Taking i, > 0, we conclude that
(3.39) Yoin = Yn T 2 = Az > 0

satisfies both (3.32) and (3.33). This establishes:
* See the last sentence of Section 1.13 (p. 42).
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TrEOREM 3.8.1: A necessary and sufficient condition for (the strong)
Postulate D, of the possibility of production with inlermediate commodities
to be salisfied is that the cone

(3 40) (_Ifin Aﬁn)
. 0 Aiut.

shall contain the linear space of Ny, dimensions,

(3.41) (:H““)
) Oint

By a similar reasoning we can derive a criterion for the weak postulate,
which we state without proof:

Turorem 3.8.2: If the irreversibility postulate, A, is satisfied, a necessary
and sufficient condition for (the weak) Postulate Do of the possibility of
production with inlermediate commoditics to be satisfied is that the cone
(3.40) be lineal. '

3.9. Computational aspects of the criteria for postulates A, B, C and D,
It is worth noting that the criteria given for Postulates A, C,, Dy, and
those given for Postulates B (Theorem 3.5.3), Cs, Dy in the case in
which Postulate A is satisfied, can all be stated as conditions on the
lineality of a cone defined by means of the technology matrix A, in
one case {(D;) supplemented by a simple condition on the lineality space
of such a cone. The main computational problem involved in the appli-
cation of these criteria is therefore the determination of the lineality
of a cone defined as the convex hull of given vectors. It is quite possible
that, in a variety of circumstances, computational methods are found
economical for this purpose which do not require the inversion of
matrices. It is for this reason that we have given explicit eriteria for
the case where intermediate goods are present. Alternatively, as shown
in (the next) Section 3.10, intermediate goods can be eliminated from
the technology before the production possibility criteria are applied,
by methods based on polarity of cones, and therefore essentially involv-
ing matrix inversion. In any case, polarity of cones and matrix inver-
sions are essential concepts for the theory of prices of commodities,
developed in Sections 4 and 5.

* 3.10. Reduction of the technology matriz. The requirement that net
output of intermediate commodities shall vanish is equivalent to inter-
secting the technologically achievable cone (A) with the linear space
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¥int = 0. Considered as a cone, this linear’ space can be denoted by

ﬂ:Ifin 0
(3.42) ( 0 0 )
0 :}:Ipri

The interseéction is again {by XVII , property (a), Section 2] a (polyhedral)
cone, which we denote, after omitting the vanishing “int”’-coordinates,
by

(3.43) () = (‘;f)

We shall say that 4 is obtained by a reduction of 4 which gives effect,
once and for all, to the restriction ;. = 0. To indicate how 4 is ob-
tained from A4, we make use of certain properties [XVTII, Seetion 2] of
the mapping of the space of cones (4) onto the space of their negative
polars (A)~. We have, interchanging the order of “int”- and “pri”-
coordinates,

Z ;{fin Afin Z‘:Iﬁn 0
(344) (0 ) = (Epri> = (Apri) N ( 0 :i:[pri)'
" N0/ M o 0

Let A~ denote a frame of (A)™, and Ag,, A, A, its submatrices aceord-
ing to the three types of coordinates. Then, indicating under the
equality signs the property used, we derive from (3.44)

i At 0 v~ sdm;m 0\~
={4;m 0 =4y 0 =
‘ (Oint,) (c)( f)_ ) ( ® )(b)

. 0 LTy

Aa\" /&l 0
(3.45) = (A;,i) n ( 0 ﬂ:Ipri) -
0 0 0
A1 0 +lsn 0 AT
_ ([A;J o ) N ( 0 iz,,ﬂ) _ ([A;J )
0 iy 0 0 Oint

The equalities in (3.45) without a reference follow trivially from the
definitions of cone, polar, sum, and intersection. From (3.45) we econ-
clude:
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TrauoreM 3.10: The set of those poinls y in the commodily space, pos-
sible in a technology A involving intermediate commodities, which satisfy
the restrictions Yiny = 0, 25 identical with the set of oll possible points in a
technology A derived from A by

- |Am|”
(3.46) ="
A
Of course, application of the criteria for Postulates Cy or Cy to (4)
is equivalent to application of the criteria for D, or Dg, respectively, to
{A). The reader who desires a further exercise in operations with the

polar transformation of cones may wish to establish the equivalence
explicitly.

4. Tur ErriciENT PoINT SET IN THY SPACE OF FINAL AND PRIMARY
CoMMODITIES

4.1. Primary factors regarded as desired commodities. We shall now
study the application of the allocative objective of production introduced
in Seetion 1.7. It wili be useful first, in the present section, fo consider
the case in which no availability restrictions are placed on the net flows
of primary factors. Instead, as already suggested in Section 1.9 with
regard to land, we shall include primary factors among the desired com-
modities, with the interpretation that the objective of the economy is
served by the algebraic increase of their net output (i.e., by the decrease
of their input). With regard to manpower or land this interpretation is
justifiable by the existence of an alternative use of these factors for
leisure or recreation. With regard to other primary factors, a justifica-
tion may be found in a desire for conservation of exhaustible resources,
although such a consideration can be adequately expressed only in a
dynamic model. However, the question of justification of the objective
is not important at this stage because the present case is considered
mainly for its mathematical simplicity, as a step toward cases which are
both more complicated and more realistic.

With respect to intermediate commodities, we shall assume in the
present section that the technology matrix A either does not contain
them at the outset, or is already the result 4 of a reduction, as defined in
Section 3.9, of an original matrix 4 so as to eliminate intermediate
products. In the second interpretation, we shall omit the bar from the
symbol A and speak of the cone (4) ag the possible point set in the
reduced technology, although it excludes points possible in the original
technology but unattainable under the restriction (3.31) on intermediate
commodities.



60 T. ¢. KOOPMANS [PaRT 1

We shall, however, not necessarily assume that A incorporates the
restrictions y, 2 0 for all n designating nonprimary commodities, men-
tioned in Section 1.7, although such an assumption can be added when-
ever desired. Thus qualified, the concept of possibility, as introduced
formally by Definition 3.2, differs from that of attainability (see Defini-
tion 5.2) in that the availability restrictions on primary commeodities,
and those on final commodities not implied in the technology 4, are
disregarded in it.

As a result of these specifications, our commodity space consists of
final and primary commodities only, and all of these are regarded as
desired commodities.

4.2. Definition of an efficient poinf. A possible point (4.1) in the com-
modity space is called efficient whenever an increase in ome of its co-
ordinates (the net output of one good) can be achieved only at the cost
of a decrease in some other coordinate (the net output of another good).
This is expressed mathematically in

DeriniTION 4.2: A poind y in the commodily space is called efficient if
it is possible [i.e., if y e (A)], and of there exisls no possible point § € (4)
such that

(4.1) §~-y=0.

4.3. A necessary and sufficient condition for efficiency. We must expect
to find more than one point y satisfying this definition. For instance,
because of the linear homogeneity of all conditions entering into this
definition, the efficiency of y entails the efficieney of Ay if A is a positive
scalar. Generally, the efficient point set consists of a set of halflines
rather than a single halfiine. Application of the criterion of efficiency
thus serves only to eliminate a set of clearly wasteful modes of produc-
tion, leaving us with a set of efficient points from which further choice
by other criteria is to be made. These further criteria fall outside the
scope of this chapter. We are studying only the properties of the efficient
point set and the conditions under which it can be regarded as defining
a transformation funetion.

In this section we shall give a discussion of the case of two com-
modities, based on diagrammastic illustration, which will help us formulate
a theorem concerning the nature of the efficient point set. In the next
section we shall prove that theorem for the case of N commodities.

Let the cone A0B in Figure 3 be the possible cone (4). The condition
(4.1) can then be interpreted as follows: A point y of (4) will be efficient
whenever a displaced cone DyE with vertex y and spanned by halflines
YD, yE parallel to the positive coordinate axes has only the point y in
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commen with the cone 1 AQOB. It is seen that this requirement excludes
(a) any interior point ¥" of A0B, and (b) any point % on the halfline
0A in the boundary of A0F (except the point 0), but permits {e) all
points ¢ of the halfline 0B in the boundary of AOB (including the point
0). The bounding halfline 0B of 408 distinguishes itself from the
bounding halfline 04 in that each point ¥ of 0B possesses a normal yN
to AQOB with positive direction coefficients. It is elear that each point
possessing such a normal is efficient. The converse statement, that

0

Ficure 3

each efficient point possesses such a normal, is likewise clear in two
dimensions, but needs more careful argument in the N-commodity case.
It will then be our task to prove the following theorem.

TuroREM 4.3: A necessary and sufficien! condition thal a possivle point
y € (A) be efficient according to Definition 4.2 1s that y possesses a positive
normal (p) to (4), as defined by (4.7) below. Thzs implies as a necessary
condition thal y is a boundary point of (4).

*4.4 Proof of Theorem 4.3; the local possible cone. It is inconvenient
to work with displaced cones, such as DyFE in Figure 3, with a vertex not
in the origin. This can be avoided by using the concept of the local
possible cone defined as follows.

DerintrioN 4.4.1: The local possible cone (D) in the point y of the pos-
stble cone (A) 1s the set of all vectors d of the form

(4.2) d = NG — ), 7e(d), » a positive scalar.

t No confusion need arise between the use of the letters 4, B, - - - to indicate half-
Yines in Figure 3 and their use to indieate matrices.
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It follows easily from the convexity of {A) that the set so defined is
indeed a convex cone, and that ¥ + d e (4) whenever A £ 1. ‘The cone
(D) therefore contains all directions of variation from the point y of
(A), in which it is possible to go (for some positive distance) without
going outside the possible cone (A4). In other words, (D) is obtained
from the displaced cone “projecting” (4) out of the vertex ¥, by a transla-
tion which makes the new vertex coincide with the origin. In Figure 3
the local possible cone in ¥’ is solid, that in y is the halfspace “below”
the line 0B (extended also beyond 0),

Lemma 4.4.2: The local possible cone in y can be represented by
(4.3) | D) =(~y A

To prove this lemma, we note that any vector d satisfying (4.2) can
be written as

1
(4.4) d=AJ —y) =M—y + AZ) = \[—y A] [J ,
x>0, z2z=0

and is therefore a vector of (—y A). Toargue the converse, we consider
separately those vectors of (—y A) which are not contained in (4) and
those which are. Any vector of the first class can, by a suitable positive
choice of N, be expressed as d in (4.4), and therefore satisfies Definition
44.1. Any vector of the seeond class [i.e., any vector d of (4)], can
be used to define a vector § = d + y which is also in (4), whence d
satisfies Definition 4.4.1 with A = 1.

It follows from Lemma 4.4.2 that the local possible cone is a convex
polyhedral cone. It follows further, by Theorem 14 of Chapter XVIII,
but it can even more readily be argued directly from Definition 4.4.1,
that the loeal pE:sible cone (D) in an interior point y of (4) is solid.
Since (D) is defined only for points y of (4), it contains the line (&y),
and therefore its lineality is at least one whenever y > 0.

To prove Theorem 4.3, we now express Definition 4.2 of efficiency of
y by the requirement

(4.5) (—y AN@) =0

[i.e., we cannot from y proceed in a positive direction within (4)]. A
condition of this form has already been analyzed in the paragraphs fol-
lowing (3.14} above, the only difference being that (—y A) is known to
be lineal. The reasoning previously given therefore now leads to the
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result that, for ¥ to be efficient, it is necessary and sufficient that there
exist a vector p satisfying

(4.6) p'l-y A]£0, »p>0,
or, equivalently because of (3.1), a vector p satisfying
(4.7) P40, py=0 p>0

{a condition applicable also when y = 0). This cannot be the case if y
is an internal point of (A), because then (—y A) is solid and hence
possesses no nonvanishing normal.

Sinee by Lemma 4.4.2 any halfline (p) normal to (—y 4) on 0 gen-
erates a displaced halfline normal to (A} on the vertex y, we shall refer
to (p), briefly though somewhat inaccurately, as a normal to (4) in y,
and to p as a vector normal to (4} in 4. ,

4.5. Efficient facets. 1t has been proved by Gerstenhzber [XVIII,
Theorem 35] that the boundary of a convex polybedral cone (A) is the
union of a finite number of its open proper facets,* no two of which
have a vector in common. We use the term “proper facets” here to
designate (closed or open) facets of which the dimensionality is at most
N-—-1

Closed facets are defined by Gerstenhaber recursively, a closed
(n — 1)-facet being 8 cone (F,_;), contained in the boundary of a
closed n-facet (F,), such that no convex cone (F) containing both
(Fn—3) and a vector not in (F,.,) is contained in the boundary of (F).
Thus (F,—;) is a maximal convex cone in the boundary of (F,). By
identifying (F,) with (A} if » = dim (4), facets of all lower orders n
are defined, and the order n is found to equal the dimensionality of (Fy).

A closed facet (F,) is [XVIIT, Theorem 23] spanned by a submatrix
F, of aframe A of (4). An open facet )F,( is here defined as the relative
interior of a closed facet (F,.), or equivalently [XVIII, Theorem 1] as
the set of vectors obtained by strictly pesitive linear combination of the
vectors of F,. The dimensionality of )F,( is defined as that of (F,).
We shall often use the term “facet” without adjective if the notation
specifies whether the facet in question is open or closed, and also in state-
ments applying to both kinds of facets. The dimensionality n of a
facet YF,( of a pointed cone (A) equals the number of linearly inde-
pendent frame vectors of A included in the submatrix F,. The cone

12 If (A) is pointed this ineludes the origin as a separate facet, which must here be
considered as open. If {4) i lineal, its lineality space is an open facet conlaining
the origin.
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AOB of Figure 3 thus has two open 1-facets, 04 and 0B (each not
including 0), and one open 0-facet, 0.

In this two-dimensional example it is obvious that the normals to
AOB in all points y of 0B are parallel. To formulate the extension of
this statement to the case of N commodities we shall associate with each
boundary point ¥ of (4) by (4.3) the cone (D)~ consisting of all vectors
p normal to (4) in y. This will be referred to, again somewhat in-
accurately, as the cone of normals to (A) in y. The extension of the
foregoing statement, to be proved as Lemma 4.6 in (the next) Section
4.6, is that all points y of a facet )F( have the same cone of normals
(Dp)~. TFrom this lemma, the following consequences of Theorem 4.3
are also proved in Section 4.6:

TaBoREM 4.5.1: If one point y of an open facet YF( of (A) is efficient
according to Definition 4.2, then all points of the closed facet (F) are efficient.

On the basis of Theorem 4.5.1, a further definition leads to a reformula~
tion of Theorem 4.3.

DeriniTioN 4.5.2: A facet (open or closed) of (A) is called efficient if all
its poinis are efficient.

TuEOREM 4.5.3: 4 necessary and sufficient condition that an open or
closed facet, )F( or (F), of (4) be efficient according to Definition 4.2 is
that there exist a vector p salisfying

4.8) PA=0, pF=0 p>0.

*4.6. Proofs of Theorems 4.5.1 and 4.5.3. We shall first draw some
conclusions from the assumption that y is & point of a facet )F( as defined
by

(4.9) y = Fap, arp > 0.

If in Theorem 14 of Chapter XVIII we let A stand for (F), B for (y),
we find that

(410) (—y F)=(—F F) = dimensionality space of (F),

regardless of the particular value of y satisfying (4.9). Let us denote by
(Dr) the local possible cone in a point y of )P(. Then, from Lemma
4.4.2, since F is a submatrix of 4, and using (4.10),

(@11) D) =(-y A)=(-y F A)y=(-F F A)=(-F 4,

again independently of the particular point y of }F(. It follows that
the cone of normals (Dr)™ on (A4) in y depends only on the facet )F(.
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Now let 7 be a point of the (closed) facet (F) but not necessarily a
point of )F({. Then

(4.12) —§e(—-F),
and the local possible cone (D) in 7 satisfies
{4.13) (D)= (-3 A)c(-F A)=(Dp).

We then have [XVII, Section 1B, property (1*)] for the cone (D) of
normals on (4) in 7

(4.14) (DY~ 2 (Dp)™.
These results establigh the following lemma.

LevMa 4.6: All points y of an open facel YF( of (A) have the same cone
of mormals (Dp)™ to (A). This cone is contained in the conc of normals
(D)™ of any point § of the closed fgcet (F).

On the basis of this lemma, we may now speak of a normal to (4) on
YF(, or on (F), instead of the previous term: normal to {4) in a point y
of )F(. 1If pissuch a normal, we shall also say that YF(, or (F), possesses
a normal p to (4). Since by Theorem 4.3 the efficiency of a point y
is equivalent to the existence of a positive normal to (4) in gy, Theorem
4.5.1 follows directly from Lemma 4.6. Theorem 4.5.3 states the re-
quired existence of a positive normal explicitly as a condition on the
facet YF(.

4.7. Economic inlerpretation of the effictency condiitons. An interesting
interpretation can be given to a vector p normal to (4) on an efficient
point . We shall call it a vector of prices p, of the commodities
n=1, -+ , N in the point y. There iz in this term no necessary
implieation of a market in which exchange of commodities between dif-
ferent parties takes place. The ferms “shadow prices” or “accounting
prices” have been used in various contexts to express this reservation.
For the moment, we shall use the general ferm “prices,” subject to
different interpretations in different uses of the model.

To see the meaning of this interpretation we rewrite (4.8), having
regard to (4.9}, as separate conditions on each column vector a) of 4,
as follows:
(4.15) {pla"” =0 Hm>0

'p’a(k) _5_ 0 if Ty = 0.

The expression p'ay is interpreted as the net (accounting) profit on the
unit of the kth activity, computed on the basis of the price vector p.
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Then (4.15) says that no activity in the technology yields a positive
profit, while each activity carried out at a positive level to achieve the
point y yields a zero profit. We thus find the following equivalent
formulation of Theorem 4.5.3 in economic terminology:

TruorEM 4.7: A necessary and sufficient condition that the activity vector
z shall lead to an efficient point y = Az in the commodilty space is that
there exists a vector p of positive prices such that no activity in the technology
permils a positive profit and such thai the profit on all aclivities carried
out at a positive level be zero. '

4.8. Uniqueness of the price vector p. Sinece every efficient faeet is
contained in the boundary of (4), the dimensionality of an efficient
facet (F) is at most N — 1. If dim (F) = N — 1, then the matrix F
has rank N — 1, and the second and third conditions in (4.8) determine
p up to a positive scalar factor. Xf dim (F) < N — 1, we have

dim (Dz)~ = N — lin (Df)
=N—-lin(—F F A)=N ~dm (F) > 1,

because of Theorem 3 of Chapter XVII, and because [XVIII, Theorem
23 (5)] the lineality space of (A) is contained in any facet (F) of (A).
Thus we have; 1

(4.16)

THEOREM 4.8: A necessary and sufficient condition for the uniqueness
(but for a positive scalar factor) of a price vecior p associated with a point
Yy of an efficient open facet )F( is that (F) have the dimensionality N — 1.

From the computational point of view, it may be noted that, once an
efficient (N — 1)-facet )F( has been found, the determination of the
corresponding price vector requires the solution of a system of linear
equations represented by the second condition (4.8). The first and
third conditions are then simultaneously satisfied by proper choice of
the sign of p.

4.9. Marginal rates of substitution defined by a unique price vector. If
for an eflicient facet (F) we have dim (F) = N — 1, the components p,
of the unique price vector p associated with F can be regarded as defining
marginal rates of substitution between all commodities on (F). If y and

131t might be thought that the condition of positiveness of p might eut ont just
one halfline (p) from a two-or-more-dimensional cone of normals (~—y A)™ such as
arises if dim (F) < N — 1. However, the intersection of the closed cone (—y A)—
with the open set )/( expressing the positiveness of p is either empty or contains an
infinite number of halflines.
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7 are two points of (F), and hence both efficient, we have, from the
second condition (4.8), p'§ = 0 = p'y, hence also

(4.17) PG —y =0
Within the hmits of the facet (F), therefore, choice between different
modes of production y, #, --- opens the same alternatives as would

trading at the constant prices p. To take an example, if

(418) % >, Y2 < Yo, Fn = Yn (n = 3: T N);
then (4.17) implies

(4.19) (i — y1) = paye — 2.

An amount (ys — %) of commodity “2” is “traded” for an amount
(g1 — 71) of commodity “1” at the price

(4.200 P1z = P1/P2

of the unit of “1” expressed in terms of units of “2.”

It is important to emphasize the two conditions that must be satisfied
for these relative prices p.., to be applicable. 1In the first place, the
relative prices refer only to a change from one efficient point y to another
efficient point . 'That is, eommadities are substituted for each other in
these ratios only after efficiency has been reached and provided that efficiency
15 matntained in the change in activity levels. Secondly, the set of
substitution ratios belonging to an efficient (N — 1)-dimensional facet
applies only to changes between points on that same facet, including its
relative boundary. Upon entering an adjoining (N - 1)-facet, a dif-
ferent set of substitution ratios becomes applicable to changes within
that facet. No set of constant substitution ratios applies to comparisons
between points of different, (N — 1}-facets.

4.10. Nontncreasing marginal rate of substitution. 1f1s easily seen that
if, in increasing the net output of a commodity “1” in efficient exchange
for a decrease in the net output of & commeodity “2,” the point y passes
from one efficient (N — 1)-facet to another, the marginal rate of sub-
stitution (4.20) cannot jump upward at the passage. Let u, v, w be
three efficient points such that

U < vy < 1wy,
4.21) ug > g > s,
Up = Uy = Wy (n=37""N)a

where we will think of % and w as on different closed efficient (¥ — 1)-
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facets, and of v as on the relative boundary of each. Now suppose we had

Yo — U g — ¥

(4.22) 22,22

wy — th Uy — U

as illustrated by Figure 4. Then, because of the convexity of the possi-
ble point get (A), we could find a possible point

(4.23) =2+ (1 —Nw
such that
(4.24) By>v, P>ty h=t, =3, ---,N),
by choosing
(4.25) BT™ BT ,
Ug — Wy wy — U

the possibility of which follows easily from (4.22). This would con-
tradict the assumed efficiency of v. Therefore (4.22) cannot be true.

This result can be applied, of course, to rates of substitution between
final commodities, between primary commodities, and between a final
and a primary commodity. It can also be extended to proportional
changes in the outputs or availabilities of two groups of commodities,
ag follows. Consider the partitionings

Y Y111
{4.26) Ytin = [ ] » Ypri = [ ]:
yix Yiv

and enlarge the technology matrix to

(1 0 ] 0 0 7
0 0 Ar 0 0
ar O An ~Iy 0
0 o  Am 0 ~Im
0 ] Ay O 0

O -1 0 0 0o

(4.27) A= y e <0, am >0,

The first column introduces an activity that “bundles” the final com-
modities “II"" in given proportions into a new composite final commodity
with net output yo, say. The second activity bundles the primary
commodities e; into a composite with net output yy..i, say. The
third column contains the original technology matrix A with two rows
of zeros added. The last two columns introduce disposal activities on
all commodities subject to bundling.
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Treating the commodities “II"” and “IIT” as intermediate, restricted
by
yu=0, ym =0,

the application of our result to yx ;1 and yo establishes that the marginal
productivity of a set of primary commodities, under proportional in-
crease in availabilities, in terms of the proportional increase in the out-
puts of a set of final commodities, is nonincreasing, outputs or avail-
abilities of all other final and primary commodities being held constant.
Of course, if “II” comprises all final, “IIT" all primary, commeodities,
the marginal productivity dyx 4+1/dyo is a constant.

Y ¥
W
Yg == 1
aqy
v My
w
i)
¥ N
Figure 4 FiGUre 5

4.11. An equivalent characterization of the efficient point set y. So far
we have not proved the existence of an efficient (N — 1)-facet, and it is
not difficult to construct a technology matrix of rank N, which satisfies
Postulates A, B, C of Section 3, such that none of its (N — 1)-facets
has a positive normal. The three 2-facets of the nonsingular technology
matrix

i 1 0.6
(4.28) ' A=] 1 0.5 08
-1 -1 -1
have as normals the column vectors of
-3 -1 1
(4.29) P=[pyyraral=|—4 2 0,
—5 11

none of which is positive. The example is illustrated in Figure 5, which
exhibits the intersection of (4) with the plane y3 = —1. Thus (4)
is the cone projecting the triangle aga@a@y out of the origin y =
y2 = ys = 0, which may be thought of as above the paper in which the
figure is drawn.
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The following illustration may help to visualize the nature of the
efficient point set. Attach a source of light at each coordinate axis at
the locations * yn = 0, n =1, --+ , N, respectively, and let (4) be
represented by an opaque body. By Postulate B of Section 3, all
sources are located outside (4). Any facet which receives light from
all sources consists of efficicnt points only. Any open facet which is
in the shade of (A) with respect to at least one source does not contain
any eflicient points, although lower-dimensional facets in its relative
boundary may contain cfficient points. In particular, the origin y = 0
is an efficient point on the relative boundary of all facets, because of
Postulate B. An open facet containing a straight line segment parallel
to a coordinate axis is to be regarded as in the shade of (4) with respect
to the corresponding source of light.

If this construction is applied to the example of Figure 5, the facet
Jaz) @ (isin the shade from sources 1, 2, and 3, the facet Jay, as(
is in the shade from source 1, while the facet Ja;; acz)( just falls in the
shade from source 2. Similarly, of the 1-facets, only )a(y ( receives light
from all three sources.

These considerations suggest a method of constructing the efficient
point set, expressed by the following theorem.

TurorkM 4.11: Let A be a technology matriz satisfying Postulate B.
Let

(4.30) A =[-1 4]

be the technology matriz obtained from A by adjoining costless disposal
activities for all commodilies. Then the efficient point set in the technology
A is the union of all closed facets of (A) which do not contain any of the
column vectors of —1.

*4.12. Proof of Theorem 4.11.% We shall first establish three useful
lemmas.

Lemma 4.12.1: If (F) and (G) are facets of a convex polyhedral cone (A)
such that

(4.31) (@) > F), dm(@ > dim (F),

1 The illustration remains good, but is less easily grasped, if a finite positive loca-
tion is selected for each source.

'® A simple and elegant proof of Theorem 4.11, based on Theorem 26 of Chapter
XVIII, was suggested by M. Slater. He has also pointed out that Theorem 4.11
remains vacaously true if Postulate B is not satisfied. The method of proof here
followed, and in particular Lemmas 4.12.1 and 4.12.2, have usefulness for the dis-
cussion of topologieal properties of the efficient point set in Sections 4.18-4.14.
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then, the cone of normals (—G  4)™ to (A) on (@) is contained in the rela-
tive boundary of the eone of normals (—F  A)™ to (4) on (F).

Proor: From (4.31) it follows [XVII, Section 1B, property (1*)] that
(4.32) (—F A" D (-G A

Therefore [XVIII, Theorem 14] we shall have established the contention
if we can show that

(4.33) In(—(—F A~ 4+ (-G A)7") <dim(—F 4)".
This is equivalent [XVII, Theorem 3] to
(434) dim ((F —4)N (-G 4) >1lin(—F A) = dim (F),

the equality being based on Theorem 31 of Chapter XVIIL.
Now, on the one hand, we have, by (4.31),

435 F —-AN(-G ADEF —-AYN(—=F A)=(L£F).

The middle member represents the lineality space of (—F A} which,
because (F) is a facet of (4), is [XVIII, Theorem 31] equal to the dimen-
sionality space (£F) of (). On the other hand, we have, because
(—G) c (—4),

(4.36) F ~-4)N (-G A)D(-G)}

whereas by the inequality in (4.31) (—@) cannot be contained in (=F);
hence (4.35) and (4.36) imply (4.34). This completes the proof of
Lemma 4.12.1.

Levma 4.12.2: If (F) is o facet of a convex polyhedral cone (A), and
p #= 0 @ vector in the relative interior of the cone of normals (—F A}~ to
(4) on (F), then

(4.37) (F) = (p)* N (4).

Tt will be noted that this lemma specifies a class of hyperplanes (p
that can be used for § in Theorem 33(2) of Chapter XVIII. To prove
(4.37), we use the definition (2.6) of the orthogonal complement (p) L to
conclude from the premise

(4.38) 0 pe)I—F Al7(

that (F) < (p*). Since (F) < (4), we conclude that () is contained
in the right-hand member of (4.37). Conversely, if there were a vector
ain (p)* N (4) but not in (F), there would be [XVIII, Theorem 33(1)]
a facet (@) of (A) properly containing both (F) and a to which p is
normel, contrary to (4.38) and Lemma 4.12.1.

).L
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Lemma 4.12.3: A facet of () as defined in (4.30) confains a column
vector of (—1I) if and only if it does not possess a positive normal.

Proor: Any normal p to (A) on any of its facets must satisfy
(4.39) pe(Ay" = (=1 Ay =) N (4)".

Therefore, if & facet (F) of (A) does not possess a positive normal ?,
then the cone of normals

(4.40) ' (—F Ay

on (F) to (A) must be contained in the boundary of the positive orthant
(I. Tt follows easily from the convexity of (4.40) that

(4.41) (—F Ay < (I)forsomen, 1=n3N,

where ,J denotes a matrix obtained from the unit matrix I by deleting
the nth column (which we denote by i(,)). Taking negative polars in
{4.41), we obtain

(4.42) (=F A)D (=T i) D (ki) for some n.

It follows that —i(n is in the lineality space of (—F A). Since, by
(4.30), —%@) € (4), it follows [XVIII, Theorem 32] that

{4.43) —iy € (A) N linspace of (—F A) = (F).
Conversely, if a faret (F) possesses a positive normal p to (4),
(4.44) pAg0, pF=0 p>o0,

it cannot contain a veetor —i(,). This completes the proof of Lemma
4.12.3.

We proceed to the proof of Theorem 4.11, Let (F) be an efficient facet
of (A). Then (F) possesses a positive normal to (4),

(4.45) pe(—F A)y” N)HI,

which, since )I( is an N-dimensional open set, can be selected in the
relative interior of (—F A)}~. Then Lemma 4.12.2 establishes the first
equality in

(446) (N =E* N A =@ N(~T 4)=@@"*n .

The second equality in (4.46) is a consequence of (4.45), which ean be
written as

(4.47) P4 £0, p’F =0, p >0,
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to show that

(4.48) p'a=pl—I A] [:] = —p'z 4 p'Adz <0
whenever z < 0, z = 0, and hence p'd = 0, @ ¢ (4) implies G ¢ (4). It
follows [XVIII, Theorem 33 (1)] that (F) is a facet of (4) which, by
(4.47), possesses a positive normal to (4). TItfollowsfrom Lemma 4.12.3
that (F) is a facet of (4) not containing a column vector of —1.
Conversely, let (F) be such a facet of (4) and hence, by Lemma 4.12.3,
possessing a normal p satisfying (4.44), which we select again in the
relative interior of (—F A)™. Then, by the same reasoning applied in
reverse,

(4.49) F) =@ N @) =@ N Q)= (@),

where [XVIII, Theorem 33 (1)} (F) is a acet of (4) which by its defini-
tion has p as a positive normal, and hence is efficient.

Since by Theorem 4.5.1 the efficient point set by Definition 4.2 is made
up entirely of efficient facets, this concludes the proof of Theorem 4.11.

4.13. Topological classification of efficient point sets. We shall usc
Theorem 4.11 to give a brief heuristic discussion and elassification of
topologically different cases with regard to the efficient point set, illus-
trated by graphical examples in a three-dimensional eommodity space
(N = 3). We shall visualize halflines and cones in that space by their
intersection with the plane

{4.50) Ny = —1,
where ki is a veetor which satisfies
(4.51) WA = n[=1 Al <O

and is therefore positive. The existence of such a vector, whenever
Postulates A and B of Section 3 are satisfied, is guaranteed by Theorem
3.5.2. By proper choice of the units of measurement for the com-
modities, we can make all components of h equal to 1. Thereby the
intersection of (4.50) with (—I) beecomes an equilateral triangle (for
N > 3 a regular simplex), as shown in Figure 6a, to be denoted by
{—1TI}. The intersection of (4.50) with the various octants is shown in
Figure 6b, where the origin can be thought of as loeated above the
paper.

Because of (4.51), every frame vector of (4) intersects the plane (4.50)
in a finite point, and (4) intersects {4.50) in a polygon {A] obtained
as the convex hull of those points, Finally, () intersects (4.50) in a
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polygon {A} which is the eonvex hull of {A} and {~I}. We use the
relations between {4}, {—1I}, {4}, illustrated in diagrams, to discuss
corresponding relations between (4), (—1I), (4).

¥z ; ,J’z
/
/
/
/
/
0
0 / y
i
D 3
\\ 0
\\
~
\\
0
~1
Fiauer Ga

The simplest case, illustrated in Figure 6c, is that where (—1I) con-
sists entirely of internal vectors of {4). In that case (4) and (A) are
identical, and no facet of {A), or its dimensionality space, contains a
column vector of —I. The cone {A) is necessarily N-dimensional, and

Figugre 6b
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the efficient point set is its entire (N — 1)-dimensional boundary,
topologically equivalert to an entire (N — 1)-dimensional linear space.

2 5y @ (5)

2y

0)

2@

Tz

FIGURE Be

The second case is that in which (4) and (—1I) again have an internal
vector in common but (—1) contains vectors outside {4). This ease
is illustrated in Figure 6d. The dotted lines show how (4) is extended

am G(G)

Ficoure 6d
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to (4). The application of Theorem 4.11 shows that the efficient point
set consists of the adjoining closed facets (¢y ac)) and (a@y ag@),
and the separate closed facet (aey a(ry). These two 2-dimensional parts
of the efficient point set are joined only by their common relative bound-
ary point in the origin, so that deletion of the origin would destroy the
connectedness of the efficient point set. For N = 3, at most three so
separated sections can arise in this way, some or all of which may
degenerate to a 1-facet. ‘

A third conceivable case, that in which (4) is contained in (—1), is
excluded by either of the Postulates C;, Cy of Section 8. Therefore
the boundary of (4) contains at least one column vector a of A, which
is not in (—1I), unless (A) is solid. By Theorem 4.11, the halfline (a)
must therefore be part of the efficient point set. In the light of Theorem
3.5.1, this establishes

TaroreM 4.13: If the technology matriz A satisfies Postulales B and C;
or Ca, of Section 3, the gfficient point according fo Definition 4.2 contains
at least one halfline (@) based on a column vector a of A.

The fourth case is that in which (—17) and (4) have no internal vector
in common. Topologically, this case is not different from that subcase
of the second case, in which the part of (A) outside (—1I) is contractible
to a point within itself. Because of its economic importance, this case
will be explored further in the next section.

4.14. Contractitnlity of the efficient point set when af least one nonprimary
desired commodily exists. Our examples suggest that the splitting up
of the efficient point set into subsets connected only by the origin cannot
occur unless the technology matrix A permits each commodity to appear
as a negative output (net inflow) for some activity vector £ = 0. The
latter assumption will rarely be satisfied in realistic situations, because
in most applications it is known in advance that certain desired com-
modities are not given by nature. In Section 4.1, we have left open
the possibility of incorporating in A the restriction y, 2 0, n designating
a nonprimary commodity, expressing that circumstance, The following
statement is strongly suggested by our discussion and is believed to be
valid.

AssERTION 4.14: Whenever the technology metriz A satisfying Postulate
B of Section 3 restricts one commodity, “1” say, to nonnegative net outputs
but permits positive outpuls of i,

(4.52) y = Ax, 2 = 0 implies ¥; = 0 and permits 3, > 0,
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the efficient poini sel with the origin y = 0 deleted is coniractible within
itself to a point.

In Section 4.15 we give suggestions toward a proof of this assertion.

*4.15. Outline for a proof of Assertion 4.14. It seems a fruitful ap-
proach to such a proof to utilize the one-to-one mapping of the open
facets YF( of () on the open facets )F(7)(,.say, of its negative polar
(A)~. The closed facet (F<™?) corresponding to )F ) { may be defined,
for instance, as the cone of normals to (4) on (F) and is then found to
equal the intersection

(4.53) (FN=(—F Ay~ =(-F F Ay
= (N A" =EFE* N A~

of the orthogonal complement (F)* of the dimensionality space (£F)
of (F) with the negative polar (A)~ of (). Then, from Lemma 4.12.2
and the definition of (4)~, it is seen that (F) is the cone of normals to
(4)~ on any point of )F(. From this it follows [XVIII, Theorem
33 (1)] that

(4.54) (NN Ay~ with 05 fe)F(

is a facet of ()™, which by Lemma 4.12.2 does not depend on the choice
of f, hence equals (F) as given by (4.53). Hence (F*™) is indeed a
facet of (A)”. Furthermore we have

{4.55) dim )P( + dim YF( = N.

In particular, the vertex of (4) is mapped into the interior JA™( of
(4)~.

If we define two facets )F,( and )F,( whose dimensionalities differ
by one as incident whenever one is in the relative boundary of the other,
it follows from Lemma 4.12.1 that the mapping preserves ineidence,
while reversing the order of the dimensionalities. It is to be expected
that topological properties of the union of a set of open facets depend
on the incidence relations among these facets only. Then the union U
of a set 8 of facets }F( has the same contractibility properties as the
union U of the set 8¢ of corresponding facets YF (.

The efficient point set is now to be defined as the union U of the set S
of all open facets of (4) not containing a veetor of —I, exclusive of the
origin. By the definition (4.23) of () we have

(4.56) @)~ = (~1 4) =) N @),
showing that (A)™ is contained in the closed positive orthant (/). By
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Lemma 4.12.3 any facet }F~( contained in the boundary of (I) must

be the mapping of a facet )F( of (4) containing a vector of —1I, and

conversely. Hence the set S is mapped into the set $ of all proper

open facets of (A)™ not contained in the boundary of (I}. Our task

.is then to prove that the union U= of S is contractible within itself

toapoint. Itiseasily seenthat U™ contains no boundary points of (7).
The assumption (4.52) implies that

(4.57) -ty e(4)T, dgye(4)T,

if 2¢;) denotes the first column vector of . This makes it possible to
map U™ one-to-one and bicontinuously on a subset V of the first co-
ordinate hyperplane

(4.58) ()t = (&D),

(where ;I denotes the unit matrix with the first column deleted) as
follows: With each point p of U™ we associate its orthogonal projection

(4.69) P = p — Piiq) € (F10)

on the plane (4.58). Since (p is in (I) whenever p is, and since by
(4.57) (1yp is in (A)™ whenever p is, p e U™ < (A)™ implies by (4.56)
that (1;p € (A)~; hence by (4.56) and (4.59) we have, say,

(4.60) wp e ()™ N QD) = (@).

Conversely, it can be shown from (4.59) that, if (;)p is a point of (Q)
which is not in its relative houndary, then the point

(4.61) P = wp + miq,
where p, is defined as the highest value of $; for which
(4.62) P = wp + Puiqy e (A)7,

is finite and in U™, In this way a one-to-one bicontinuous mapping
can be established between U‘™ and a point set V equal to the cone (Q)
or obtainable from (@) by deleting a part or the whole of its relative
boundary. The contractibility properties of (¢) are not affected by such
a deletion.

Tt should be pointed out that U™, and hence V, is indeed nonempty.
This follows from Theorem 4.13 and the fact that (4.52) implies Postulate
Cs of SBection 3.6. If we assume that Postulate A is also satisfied, then
(A)~ is N-dimensional. It is seen to follow from (4.59) that both /<™
and (@) are then (N — 1)-dimensional.
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5. Tur ErricieNT PoiNT SET IN THE FiNaL CoMMODITY SPACE UNDER
GIvEN AVATILABILITY REsSTRICTIONS ON PriMarY CoOMMODITIES

5.1. The set of attatnable poinis. In the preceding section, we have
studied the notion of allocative efficiency in the possible point set, that
is, accepting the restrictions expressing the possibilities of technology,
and also the inavailability in nature of nonprimary commeodities, but
ignoring the nonhomogeneous restrictions expressing the limited avail-
ability of primary commodities. Thus, in Section 4, the space of desired
commodities includes both final and primary commodities, the latter
in the sense that their conservation is deemed desirable.

We shall now regard only the final commodities as desired. Inter-
mediate commodities we place, as before, under the restrictions (1.9) or

(5.1) Yint = 0.

Concerning the primary commodities, we shall assume that they are
available in rates of flow limited by the inequalities (1.7), which we
restate here in the form

(52) Yori 2 Npriy Tori < 0.

These limits eannot, it is assumed, be exceeded by any means, but within
these limits an increase in the input (an algebraic decrease in the nega-
tive net output) of any primary commodity is not regarded as in any
way undesirable or costly. The attainable point set is now defined as in

DerFmviTioN 5.1: A point y in the commodity space is called aftainable
if there exists a point x in the activity space such that

Ytin

(63) y=|vyim]| =42z, 220, ym=0,
Ypri

and such that yins and Ypr: satisfy (5.1) and (5.2), respectively.

Any attainable point is a possible point by Definition 3.2, but the
converse is not necessarily true.

5.2. Redefinition of the efficient point eoncept. Since it is now only in
the net flows of final commodities that increases are desired for their
own sake, the definition of efficiency must be revised to read:

DEFINTTION 5.2: A point y in the commodity space is called efficient if
it is altainable and i there exists no attainable point § such that

(5.4) Ftin — Ytin 2 0.
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In words, Definition 5.2 says that an attainable point y is called effi-
cient whenever an increase in one of its final commodity eoordinates
(in the net output of one final good), within the availability limitations
on primary commodities and the zero-net-output restriction on inter-
mediate commodities, can be achieved only at the cost of a decrease in
some other final coordinate (the net output of another final good).

As explained in Section 3.10, the restriction (5.1) on flows of inter-
mediate goods can be satisfied once and for all by an appropriate reduc-
tion of the technology matrix. We shall again assume that this redue-
tion of A has already been carried out and omit the bar from the reduced
technology matrix A, except in Sections 5.10-5.12, where the implications
of our results for the intermediate commodity space are explored. In all
other parts of Section 5, therefore, ¥ and A4 contain no coordinates
representing intermediate produects, and the restriction (5.1) in Definition
5.1 of an attainable point can be ignored.

5.3. The role of the availability restrictions on primary commodities. It
may be expected, and will be confirmed in Section 5.14, that, if y is an
efficient point according to Definition 4.2 satisfying (5.2) and (5.3) in
such a way that the equality sign in (5.2) holds for all components of
Ypri, then y is also an efficient point according to Definition (5.2). The
reader may therefore ask himself whether the present assumptions can
lead to any results that cannot be read from the theorems of Section 4.
It will be seen below that the present assumptions do give rise to a new
possibility, namely, the case where a point y is efficient aceording to
Definition 5 although for some components of ¥, the inequality sign
in (5.2) holds. The commodities in question will be called free primary
commodilies in .

Other consequences of the imposition of availability restrictions arise
from the fact, to be proved in Lemma 5.8.1 below, that the efficient
point set according to Definition 5.2 is bounded. It is therefore possible
(Section 5.6) to obtain efficient points by the maximization of a linear
function. This is important for purposes of computation of efficient
points, and also for the construction of rules for the attainment of effi-
ciency under given institutional circumstances such as those specified
in Section 5.12.

5.4. Reformulation of the necessary and suflicient condition for efficiency.
‘We shall use a sinaple example to suggest a theorem analogous to Theorem
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4.3, to be proved in (the next) Section 5.5. Consider the technology

wm @ ® 0) ®) ®
0 08 10 (09 062 00
(55 A=|—-1 =10 —10 (—10) —08 —06
0 —05 —08 (—1.0) —1.0 —L10

¥

in which ¢, is the only final commodity flow, while ¥, and y; are the two
primary commodity flows restricted by

(5.6) v2=2 1, wmz -]

respectively. The activity vectors aq, G, *** , @) have been so
normalized that the unit amount of each activity fully uses the available
flow of that primary commodity whose availability limit controls the
maximum level of that activity if carried out alone. Thus the unit
amount of each activity 1, 2, 3, or 4 uses up the available flow of com-
modity 2, and the unit amount of each activity 4, 5, or 6 uses up the
available flow of commodity 3. Activity 4 is not a frame activity but
represents that combination of activities 3 and 5 (with weights 14 each)
which fully utilizes the available flows of both primary commodities.

Figure 7 (in which the sign convention has been reversed for y; and y3)
exhibits the attainable point set, a polyhedron with vertices O, ay, @),
@y, Gea)s Gy @e), 7. The disposal activities 1 and 6 have been added
mainly to improve the readability of the figure. It is immediately clear
from this figure tbat the point a3 is the only efficient point in the
present case. For no other attainable set of activities does y; reach
the value 1. If we introduce a disposal activity 7 for the third com-
modity alone (with coefficients 0, 0, —1), & weighted combination of
the activity vectors a(y and a(;) will represent the vector a), and all
points of the line segments aacs) are efficient. If we introduce an
activity 9 which allows the first commodity to be produced from the third
alone (with coefficients 0.5, 0, —1, say), then only the vector a(iq
(with coordinates 1.1, —1, —1) indicates an efficient point.

In order to formulate a theorem suggested by Figure 7 it will be useful
to associate with each attainable point y a partitioning of the primary
commodities into two sets, according to whether or not the availability
lirnit on each commodity flow is reached in y. Similarly we partition
the final eommodities according to whether their net output is positive
or zero in y. After such permutation of coordinates as may be neces-
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sary, these partitionings may be denoted by

Ytint
(5.7 fin} ygy = [ Tn ] ) Yiingy > 0, Ytino = 0,
(57) Ytin 0
. Yori=
(5.7 pﬂ) Ypri = [ F ] ’ Hori= = Mpri=, Ypri> > Tpriz-
Ypri>

We shall also apply this partitioning to a normal p to (4) in y, and to
various matrices, it being understood that the partitioning has a meaning
only in association with an attainable point .

THEOREM 5.4.1: A necessary and sufficient condition that an affainable
point y be efficient according to Definition 5.2 is that there exists a vecior
P, normal to the possible cone (A) in y, which has positive components for
all final commodities, nonnegative components for all primary commodities
whose availability limit is reached in y, and zero components for all primary
commodities whose availability limit s not reached in y,

(5.8) Prn > 0, Pori= 2 0, Ppri> = 0.
This implies as a necessary condition that y is a boundary point of (4).
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Thus, in the case in Figure 7, where only the activities nurnbered 1
to 6 are possible, the efficient point a3, possesses, among others, a vector
normal to (4), with components (1, 1, 0). The same vector defines the
unique normal to (4} in all efficient points on aga, if activity ac,) is
added. If activity a(g) is added, the efficient point a0y possesses the
unique normal to (4) defined by (1, 1.4, 0.5). In each of the three
cases mentioned, no other points possess a normal to (A) with the re-
quired properties. The reader may wish to visualize the proof given in
Bection 5.5 by applying it to these examples.

For brevity of expression, we shall introduce a term for the vector p.

DeriNiTion 5.4.2: A vector p normal to (A) in an efficient point y will
be called a price vector associated with y in the technology A if it satisfies
the conditions (5.8).

Before giving a proof of Theorem 5.4.1 in Section 5.5, we note another
necessary condition for efficiency, which follows from the restriction (5.3)
of the attainable point set to nonnegative values of yg,.

TurorEM 5.4.3: In an efficient point y according to Definition 5.2, either
we have ysin = 0 or the availability limit 1s reached by of least one of the
primary commodity flows.

The proof follows from the fact that, if yu, # 0, (5.3) prescribes that
yiin = 0. Then y can only be efficient if at least one of the availability
restrictions on ypr precludes the vresence in the attainable point set of a
point

(56.9) 7 = vy, » scalar, v > 1,
It follows that pyri.. in (5.8) contains at least one coordinate.

* 5.5. Proof of Theorem 5.4.1; the local atlainable cone. We now agso-
ciate with each atiainable point y a local attainable cone, comprising all
directions of variation from y in which attainability is preserved in a
neighborhood of ¥, as follows.

DerntTioN 5.5.1: The local attaineble cone (E) in the altainable poind
y is the set of oll points (vectors) e of the form

{5.10) e = M7 — y), 7 attainable, X a positive scalar.

Because of the convexity of the attainable point set, the set so defined
is indeed a convex cone, and ¥ + e is attainable whenever X £ 1. In
order to prove an analogue of Lemma 4.4.2, we associate with each
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attainable point y the following coordinate cone based on the partition-
ing (5.7),

Cin 0 ) (:l:Iﬁn+ 0 )
5. C = 3 Cin =
6.11) (O (0 Con (Ctin) 0 Tino)’

@ =" 0 )

0 :I:Ip,-i;.

For later use, we note the following expressions for the negative polars
of C; Cﬁm Cpri,

(5.12 (C)_‘“(Cﬁn 0 ) (C )_—( ° )
. ) = 0 Cl;i ) fin = —Iﬁno )
I ri=
(Opri)- = _(Op ) ]

which are found by applying the rule stated in Section 2.6.

LemMa 5.5.2: The local atiainable cone in y can be represented by
(5.13) (B) = (—y 4) N (O

To prove this lemma, we observe from a comparison of Definitions
4.4.1 and 5.5.1 that the local attainable cone in ¥ is obtained from the
local possible cone (—y A) by deleting those vectors d such that § =
y + ud violates the restrictions (5.2), (5.3) for all positive values of the

scalar u = 271, In view of (5.7), a vector d escapes being deleted under
this criterion if and only if

(5.14) diino 20, dpio=0.

The value of dpyi-. is immaterial because the last relation in (5.8) can
always be satisfied by 7 if we take a sufficiently small value of u. The
restriction (5.14) is expressed by the intersection in (5.13).

It follows from Lemma, 5.5.2 [XVII, Section 2, property {a)] that the
local attainable eone is polyhedral.

Coming now to the proof of Theorem 5.4.1, we note that Definition
5.2 of an efficient point y is equivalent to the condition that in y we
shall bave (Esn) N (I5in) = 0, or, in full array of coordinates,

ow @ )<(a,)
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Substituting from (5.13) for (E) we obtain
(5.16)

HN(C n(I““ 0 )—(— A)ﬂ(Iﬁ“ 0 )c( 0 )
=y Mo ap, /™Y 0 Cu I/

Taking negative polars and using (5.12), we obtain the equivalent condi-
tion

—~Tgn 0 +sin
(5.17) (—y A)"+( 0 —Ipri,):( 0 )
0 0 0

This condition is in turn equivalent to the following statement: For each
vector 7 such that

{(5.18) tpri = 0,

there exist vectors p, g, satisfying

(519) pe(—y A), =0, =20, ¢ui> =0
such that

(5.20) p+g=r

By taking rin > 0 we read from this that, if y 1s efficient, there exists
a vector p normal to (4) in y with the properties (5.8} required by
Theorem 5.4.1, Conversely, if {(4) possesses a normal (p) in y satisfying
(5.8), any vector r satisfying (5.18) can be expressed as

(5.21) r=«kp+gq, & & positive scalar,

by proper choice of k and a vector ¢ satisfying (5.19). Hence y is effi-
cient. ‘This establishes the necessary and sufficient condition in Theorem
5.4.1, The necessary condition follows, as before, from the fact that an
internal point ¥ of (4) possesses no nonvanishing normal to (4).

5.6. Efficient points and mazimization of o linear function of final com~
modity flows. Let us assume that a linear function of final commodity
flows, with positive coefficients,

(5.22) L= T;inyfim Ttin > 0,

reaches a maximum, within the attainable point set, in a point . Then
we have

(523) "r;in(gﬁn - yﬁn) =0
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for every attainable point 7. This and the restriction on =y, in (5.22)
are obviously incompatible with

(5.24) Ftin — Yein = 0

Hence y is efficient.

Conversely, let i be an efficient point. Then, by Theorem 5.4.1, there
exists a vector p normal to (A) in ¥ satisfying (5.8). It follows that for
every possible point 7, and hence for every attainable point g,

(5.25) PG —=0,
or, in view of the third relation (5.8),
(5.26) Din(Fein — VYtin) + Pori=Forie — Yprie) = 0,

where the partitioning (5.7 pri) applied to ¥ and y is that associated
with y. From the second relation (5.7 pri) and the second relation
(5.8) we derive that the attainability of g, which implies Fpri — 7o = 0,
further implies

(5.27) p;ﬁ=(gpri= - ypriz) = P;:ri=('gpri=- - ﬂpri—) = 0.

Combining (5.26) and (5.27), we conclude that (5.23) holds in all attain-
able points 7 if prin is substituted for agy in the definition (5.22) of the
function L. Hence the function L so obtained is maximized, within
the attainable point set, in ¥, '

The first statement in the following Theorem 5.6 summarizes these
results. The second statement, to be proved in Seetion 5.7, adds in-
formation about the set of vectors g, for which L reaches 3 maximum
in a given efficient point y.

TueoreM 5.6: A necessary and sufficient condition for the efficiency, ac-
cording to Definition 5.2, of an atiainable point y is that there exist a positive
vector Tgn Such that the linear function (5.22) of final commodity flows
reaches a mazimum, within the atlainable point set, in y. If wen s such
a veclor, then there exists a price vector p associated with y such that, for
the partitioning (5.7) associated with y,

(5.28) Ttinf- = Plingy  Tiin 0 = Pin 0-

This theorem makes it possible to compute efficient points by any of
the methods for maximizing a linear function under linear inequalities
as restraints, discussed elsewhere in this volume [XXI, XXIV, XXV].
it also leads up to an existence proof for efficient points.

*5.7. Proof of the second statement in Theorem 5.6. The proofs given
in Section 5.6 could be put so simply in terms of linear inequalities that
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their formulation by means of polar transformation of cones seemed
artificial and unnecessary.’® To show the last statement in Theorem
5.6, it is helpful to express the condition (5.24) that L reach a maximum,
within the attainable point set, in ¢, by the condition

Tiin\
(5.29) (E) c (0 ) ,
0

where (F) is the local attainable cone in y. Using the expression (5.13)
for (E), taking negative polars, and using the expression (5.12) for (C)~,
we see that (5.29) is equivalent to

0 0 Tein4
—Itiwo O Tfin 0
5.30 -y A)” -]
(5.30) (y. T+ 0 T 0
0 0 0

This can be the case only if (—y A)~ contains a vector p, of which the
sUbvectors Prin, Ptin 0; Ppriee: Ppri> satisfly (5.28) and (5.8).

5.8. Existence of an efficient poinf. The attainable point set is the
intersection of the possible eone (4) with the displaced eocordinate cone
(see Section 2.7)

(5.31) (=,
where

- Ofin .
(5.32) 7= Lm]

As such it is the intersection of closed halfspaces (each having either the
origin or the point » in its boundary), and therefore a closed convex set.
Hence Theorem 5.6 assures the existence of an efficient point if we can
prove, ag we shall now do,

Lemma 5.8.1: The attainable poini sef is bounded whenever Postulate B
of Section 3.5 is satisfied.

Theorem 3.5.1 implies that there exists a positive vector 2 such that
(5.33) hy =0
for every possible point y. With the notation (5.32), the attainable

16 The reader interested in the mechanies of proofs may wish to “translate” the
foregoing prools in terms of properties of cones.
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point set consists of all possible points # satislying

(5.34) yz
Hence, for any coordinate y,, n = 1, --- , N, of au attainable point v,
N
(535) hnyn £ - Z hmym = - Z hm'?m-
m=1 m==n
(m 7n)

Since &, > 0 for all n, finite upper and lower bounds for each coordinate
of an attainable point are thus given by (5.35) and (5.34). This estab-
lishes Lemma 5.8.1. )

It is easily seen 17 that a linear function L defined on a compact (closed
and bounded) convex set S reaches its maximum etther in one point, or in
all points of a convex set, 8,,,- Therefore we have from, Lemma 5.8.1;

TarorEM 5.8.2: If Postulate B of Section 3.5 is satisfied by the lech-
nology matriz A, then there exists for each positive vector ey at least one
efficient point y according to Definition 5.2., tn which the linear function
(5.22) reaches s (absolute) maximum in the atlatnable point set.1®

It is, of course, quite possible that different positive vectors pg, (dif-
ferent in more than scale) lead to the same efficient point y or set of
such points, as can easily be shown by examples. Therefore Theorem
5.8.2. establishes only the existence of one efficient point. Under the
assumptions stated so far, this might still be the origin, a trivial case
which we wish to exclude. This is done by the following theorem.

7' To see this, denote by lr=(s"y/r'z}w the orthogonal projection of a point ¥ on
the halfline (). Then the scalar coordinate ! measures the position of the projee-
tion {r on (+7), and L = x'y = Ir'r depends on I only. Hence, if Sy (denoted
Smodx* in XVITI) represents the projection of S on (), 8, is a closed line segment
on which L reaches s maximum in Iz, say. Then Smex consists of all peints of §
of which I,y i8 the projection.

This proof employs the notion of a limiting process underlying the definition
of & closed set. A simulfaneous proof of both Lemmas 5.8.1 and 5.8.2 that uses
finite processes only can be based on a theorem by Weyl 1935, 1950, § 4, II] that
the intersection of a finite number of displaced halfspaces (agy | op), k = 1, --- , K,
if not empty, is the convez hull of a finite number of points if and only if the cone
(@ -+, au) is solid,

13 Tt is implied in Theorem 5 of Gale, Kuhn, and Tucker [XIX] that, while Postulate
B is sufficient for the existence of an efficient point by Definition 5.2, the following
weaker Postulate B is necessary and sufficient: There is no = = 0 such that Ytin =
Afinz 2 0, yYpri = Apriz = 0. Under this postulate, the availability restrictions,
Yiin = 0, Ypri = npri < 0, exclude a bonanza in final commodities but do not neces-
sarily exclude one in primary commaodities only (since ysn = O might permit i > 0).
Because there seems to be little economie meaning in a technology matrix which
satisfies B but not B, we have not used Postulate B.
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TueoreM 5.8.3: The origin is not an efficient point according to Defi-
nition 5.2 whenever Postulate Cq (the weak postulate of the possibility of
production) of Section 3.6 is satisfied.

For, in that case, (4) containg a vector ¢ with osn > 0, and there
exigts an attainable point % = Aa, X > 0 such that s, = 0. Henee O
is not efficient.

5.9. The prices of infermediate commodities. 1t will be argued in Sec-
tion 5.14 below that the efficient point set according to Definition 5.2
is “in general” (Ngn — 1)-dimensional. As long as the availability
limits #ri are not regarded as subject to variation, it is not possible,
even in the absence of intermediate products, to interpret the compo-
nents of py a8 determining marginal rates of substitution. In Section
5.11 we shall give another interpretation of the “price vector’” p, which
applies independently of whatever restrictions the efficiency requirement.
may place on the components of y. Since this interpretation applies
also to intermediate commodities, we shall first study the extension of a
vector p normal to (4) in the space of final and primary commodities
to that of intermediate commodities. We state the relevant theorem
here and devote Section 5.10 to its proof.

TuroreMm 5.9: Theorems 4.3, 5.4.1, and 5.6 remain valid as characleri-
zations of the efficient point setf, under the appropriate definition, if the
technology matriz A and the price vector p allow for intermediate com-
modities, while attainability is defined so as to tmply the restriction (5.1)
that the net outputs of all inlermediate commodities are zero.

* 5.10. Proof of Theorem 5.9. In Sections 5.10-14 we return to the
notation 4 of Section 3.10 for a technology matrix in the space of final
and primary commodities, obtained from an original technology matrix
A in the space of final, primary, and intermediate commodities (parti-
tioned in that order), by a reduction based on the restrictions (5.1) on
intermediate commodity flows. Similarly we use the notation ¢, # for
a boundary point of () and a vector normal to (4) in g, respectively.
The present analysis applies to any boundary point 4 and any normal 7
to (4) in g, whether or not a normal satisfying the conditions (4.8) or
(5.8) for efficiency, according to the appropriate definition, exists.

The condition that  is a norinal to (4) in 7 s, according to Lemma
4.4.2, expressed by

(5.36) pe(—g A

L=
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We shall prove

Lemma 5.10: Any vector p normal to the reduced possible cone (A) in a
potnt § can be supplemented by a vector pin to form a vector,

(5.37) : (ﬁ )ape(—y A4)7,
Pint

normal to the original possible cone (4), from which (A) is derived by
(3.45), in the point
Yiin

7
(5.38) y = [0] =l yon |-
Oint

Conversely, if p is such o vector normal to (A}, iis subvector p is normal to
(4) in .
To prove the first contention, let § satisfy (5.36). Then

in — = Yfin - A-;n
o ()=o) ()
Dpri —¥Ypri Apri

by (3.45). Hence there exists a vector ¢ = 0 such that

Ptin Afn
(5.40) [f]=['_]q.
Pori Apri

We define

(5.41) Pint = ALg,

and show that
Ditin Afin

(5.42) P=|ppri| = 4Ap|q=ATg
Pint int

satisfies {5.37), as follows. The condition (5.37) can be written ag

yi] A [ —'yﬁn] -0 .A.En
(5.43) » E( ) € ( ) N (A)~ =< ~Yprid O )ﬂ (Al;i)'

Pint 0 0 I/ Mg,
This condition is satisfied on account of {5.39), because the addition of

the “int”’-coordinates in (5.43) only requires pj,, to be derivable from

Afn
Ay by the same weight vector ¢ by which § is derived from l: f_ ] , 88

pri
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specified in (5.41). To prove the second contention, let p satisfy (5.43).
Then P satisfies (5.36).

1t should be emphasized that there is no restriction on the sign of the
components of pini. Negative prices adhere to by-products of which
“top much’’ is obtained in the process of producing other positively
priced things, while the disposal of the excess consumes positively priced
commodities. Negative values can occur only for those eomponents of
pint corresponding to commodities for which no costless disposal activi-
ties are present in the technology matrix A.

5.11. Interpretation of the price vector when nel output variations are
restricted. In Sections 5.11-5.13 we shall follow the interpretations of
the technology matrix, of attainability, and of the price vector asso-
ciated with an efficient point, which allow for the presence of inter-
mediate commodities.

It has already been remarked in Section 5.9 that, when the attain-
ability restrictions (5.1} and (5.2) enter into the definition of the effi-
cient point set, the interpretation of the associated price veetor as indi-
cating substitution ratios in efficient production is no longer applicable
to all commodities, although it still applies to final commodities as before.
Moreover, even where that interpretation was applicable to all com-
modities, under Definition 4.2 of efficiency, it was limited to points in
the relative interior of (N — 1)-dimensional facets.

1t is desirable to develop an interpretation of the price vector which
is not subject to the foregoing limitations. Let us imagine that, through
communication with an economy oufside that described by the tech-
nology matrix A, a possibility is provided to trade any commodity
against any other at constant relative prices given by a price vector

Ty

(5.44) T

li

TN

1t is natural to interpret such prices as “efficiency prices” at the point
y whenever the net output vector ¥ cannot be improved upon (by in-
creasing one component without decreasing any others) through the use
of this trading opportunity in combination with changes in amounts of
productive activities. We shall show that such improvement is not pos-
sible if and only if = is a price vector associated with y in the original
technology A.

The possibility to trade with an outside world at prices = can be
introduced formally by adding to the technology a set of “exchange
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activities.” Since a value = 0 would have no meaning, we can with-
out loss of generality assume that =, is positive. Let II then represent
the matrix

~Wg —&g - —AN
o 0 - 0
(5.45) H=| 0 = 0], m>0,
] 0 T
and let the new technology matrix, extended by exchange activities, be
(5.46) Ad=[-0 1 4]

The point y is efficient in the original technology A if and only if the
cone

(5.47) (Py=(—y 4)~

of normals to (4) in y contains a vector p satisfying the requirements
(5.8) of Theorem 5.4.1. Assume this to be the case, and consider the
question whether y is efficient in the new technology (5.46). To answer
this, the same criterion must be applied to the cone of normals to (4)
in y, as given by
Py=(-y " =(~y -0 I 4)~
=(-y 4)" N (-0 M~ = (@) N (Em~

[XVII, Bection 2, property (b)l. However, since II by (5.45) has the
rank N — 1 and satisfies

(5.49) 21l = 0,

(5.48)

the negative polar of the linear (N — 1)-dimensional space (=£II} is its
orthogonal complement,

(5.50) (£I)™ = (£IN* = ().
Hence the cone (P) in (5.47) is one of the following four cones
(551) (0): (_17)1 (F); (:!:T)'

We recall that the criterion of efficiency of y in (4) is whether or not
(P) contains a vector p satisfying (5.8). Since 0 and — = do not satisfy
(5.8), y is efficient in the enlarged technology (5.46) if and only if =
is in (P) [is a normal to (4) in y| and satisfies (5.8). This completes
the proof of
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THBOREM 5.11: A necessary and sufficient condition, that an efficient
point y shall remain efficient after the addition to the technology, by (5.46),
of exchange activities (5.45) at constant relative prices =, isthat = be a price
vector associated with y tn the original technology A.

5.12. The aitasnment of efficiency under a regime of deceniralized deci-
stons. Theorem 5.11 suggests the possibility of using the device of effi-
ciency prices in institutional situations where the responsibility for al-
locative decisions is distributed over several individuals. So far the
conditions for efficiency have been discussed without reference to the
institutional arrangements under which decisions about the components
of the aetivity vector x are arrived at. One possible use of our results
would be for a centralized decision-making agency to possess all the
information that goes into the technology matrix 4, and to choose an
activity vector z such that by the proper mathematical criteria the out-
put vector y = Az is an efficient point. An opposite extreme is a situa-
tion in which knowledge of each eolumn agy of A is available only to
the individual who determines the level z; of that activity. Even in
this extreme case of decentralization, efficiency is still achievable if we
assume that information about an appropriate price veector p is made
available to all managers.

To show this, we shall consider an allocation model in which the
various decisions which together determine the activity vector z are
parceled out to a number of individuals or administrative organs, each
of which makes these decisions according to definite ruleg of behavior.
In defining the rules of behavior, we shall use the concept of the profit-
ability of the kth activity with reference to the price vector p. This is
defined as the vector product

(5.52) o = plagy

and represents the “‘accounting revenue” secured from carrying out the
kth activity in the amount xz = 1.

Let the players in our allocation game be called the helmsman (or
central planning board), a custodian for each commodity, and a manager
for each activity. Consider the following rules of behavior:

I. For the helmsman: Choose a vector pgin of positive prices on all final
commodities, and inform the custodian of each such commodity of its
price.

I1. For all custodians: Buy and sell your commodity from and to
managers at one price only, which you announce to all managers. Buy
all that is offered at that price. Sell all that is demanded up to the limit
of availability.
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ITI. For all custodians of final commodities: Announce to managers the
price set on your commodity by the helmsman.

1V. For all custodians of intermediate commodities: Announce a tenta-
tive price on your commodity. If demand by managers falls short of
supply by managers, lower your price. If demand exceeds supply, raise
it.

V. For all custodians of primary commodities; Regard the available
inflow from nature as a part of the supply of your commodity. Then
follow the rule on custodians of intermediate commodities, with the fol-
lowing exception: Do not announce a price lower than zero but accept a
demand below supply at a zero price if necessary.

VL. For all managers: Do not engage in activities that have negative
profitability. Maintain activities of zero profitability at a constant
level. Expand activities of positive profitability by increasing orders
for the necessary inputs with, and offers of the cutputs in question to,
the eustodians of those commodities.

The dynamic aspeets of these rules have on purpose been left vague.
It is not specified by how much managers of profitable activities should
increase their orders, or by how much eustodians of commodities in
short or excess supply should change the price. Neither is it indieated
how during a temporary disequilibrium a commeodity in short supply is
apportioned to managers. These questions would be highly relevant
if our purpose were to design an allocation model which automatically
seeks and finds an efficient point from some initial nonoptimal situation.
However, our present purpose is only to demonstrate that an efficient
point, onee achieved, is maintained if all players follow the rules stated.
More precigely:

TueorEM 5.12: Let prin > 0 be a vector of positive prices of final com-~
modities announced by the helmsman under rule I. Then a necessary and
sufficient condition that the vectors 2 = 0, Pine, Pori = 0 will remain constant

under the rules II-VI s that the point y = Ax is efficient and thal

Diin
(5.53) ? = | Pins

Ppri
s a price vector associated with 1.

To prove this theorem, we read from rules IV, V, and VI, respectively,
the following necessary and sufficient conditions for the constancy over
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time of Pint, Ppri, and z, respectively, where, of course, z = 0:
(5.54) Vint = Ainz = 0,

(a) Ypri = Aprix = Tpriy
(6.55) 1(b) ppri 2 0,
(€) ¥n = % if Pr > 0 and = refers to a primary commodity,

(5.56) PAS0, pag=0 i ax>0.

The conditions (5.54) and (5.554) express the fact that y is attainable.
Condition (5.56) says that p is & normal to (4) in ¢, and (5.55b) and
(5.55¢) plus the premise psin > 0 are equivalent to (5.8). By Theorem
- 5.4.1, the conditions (5.54), (5.55), and (5.56) are necessary and suffi-
cient conditions that ¥ is efficient and that p is a price vector associated
with y. This completes the proof of Theorem 5.8.

The reader will have noticed that the behavior preseribed for indi-
viduals by the rules I-VI is similar to that which results from the opera-
tion of competitive markets. The rules on the custodians are only
personalizations of the properties of competitive markets. The vector
prin Which ultimately gives direction to the allocation of resources in
production, instead of being set by a helmsman, could equally well be
the result of competitive bidding by many consumers, each of which
maximizes his individual utility. The behavior attributed to each
manager could’ also come about as the result of each activity being
carried out independently by many entrepreneurs bidding competitively
for the input commeodities of that activity and selling its output com-
modities competitively.

However, the “personal” formulation also has relevance to problems
of economie organization. The rules suggest methods whereby a planned
economy can strive for efficient allocation of resources in production.
With respect to an eeonomy in which entrepreneurs individually make
production decisions, the rules help in the appraisal of alternative forms
of economie organization or of market behavior from the point of view
of efficiency. Tinally, the analysis may be applied to production deci-
siong within the firm or the public enterprise, which can be regarded as
planned economies on a smaller scale.

5.13. Comparison with discussions tn welfare economics. It may be
useful to explore some connections between the present analysis and
the discussions by Lange [1938], Lerner [1944], Reder [1947], and others
of allocation problems in a welfare economy.’® The managers postu-

1 For a more detailed discussion of these connections, see Koopmans [1951].



96 T. ¢. KOOPMANS [PART 1

lated by these authors are in control of plants in which many activities
(as here considered) are earried out in supposedly efficient, combinations.
The problem how to achieve efficient production within the plant is
presumed solved in the discussions referred to, but is here analyzed on
the basis of a particular model of technology. This model is, in one
sense, narrower than the type of technology admitted by the authors
mentioned in that we have ruled out indivisibilities and increasing or
decreasing returns to scale. In another sense the present model is more
general, since it does not depend on the notion of a continuous family
of productive activities (a production function in the traditional sense)
for the definition of marginal rates of substitution.

Accepting the narrower assumptions regarding technology made in the
present study, the concept of “prices at marginal cost” used in the dis-
cussions referred to can be identified with our “‘efficiency prices.” The
main result of these discussions can be summarized in the statement
that allocation of each commodity in the various productive processes,
in such a manner as to equate the value of its marginal product in all its
actual uses at a level that cannot be exceeded in any potential uses, is a
necessary condition for efficient allocation of resources. The present
analysis implies further that, in a technology as assumed, observance
of this rule also forms a sufficient condition for efficient allocation of
resourcs.

*5.14. Comparison of the analyses of Sections 4 and 5; topological prop-
erties of the efficient point set under availability restrictions. So far we have
in Bection 5 used the methods rather than the results of Section 4. It
may be useful in a brief heuristic discussion to lay somewhat closer
connections between the two analyses.

Let € denote the efficient point set according to Definition 4.2,
G(npri) the efficient point set by Definition 5.2. While we have found
that a sufficient number of sufficiently diverse activities in the tech-
nology 4 makes € an (N — 1)-dimensional set, we cannot expect the
same to hold for &(5,;). Counting only restrictions that take the form
of equalities, each point of E(ny:i), besides having to be on the boundary
of (4), is subject to restrictions on ¥int, Ypri and pyi which together
are equal in number to the number Ny + Nin of primary and inter-
mediate commodities. We would therefore expect the set G(np) to be
at most (Ngn — 1)-dimensional, where Ngp = N — Niny — N is the
number of final commodities. This is necessarily true of the more
relevant set Enn(npy) of points yp, in the final commoedity space con-
sisting of all subvectors ytin of vectors y of G(ngr).

Defining €, as consisting of all yiin such that y e  we note that
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every point ¥rin of @i belongs to an Eg,(nyr) for & particular value of
Mpri- This is the value npr; = Ypri, where g is the vector supplement-
ing ¥fin and yiny = 0 to a vector y of & Therefore sy is contained in
the union Gf, of the sets Grin(nyn) for all negative values of 7y,  How-
ever, &in need not contain all points of &, for the union E* of all € (yp;)
consists of all facets of the reduced technological cone {A) possessing
2 normal p satisfying

(557) Pfin > 03 Pori 2 0’

whereas € allows only ppri > 0.

The relationships between &* and € will be useful in studying the
topologieal properties of €(ng) for a given value of i, We may define
an open facet of G(nui) as a set of efficient points y¥ which (a) are on
the same open facet )F( of the (reduced) cone (4), and (b) have the
same partitioning (5.7) of yyri. Then every facet YF( of (4) which is
in @ contributes as facets of &(n,,;) its intersections with all open proper
facets of the displaced cone (5.31). In addition, contributions to €(ngr)
may come from open facets )F( of (A) which are not in € but possess
a normal p satisfying (5.57), and of which the union when closed can
be expected to be contractible, within itself, into its common boundary
with E.

We shall not attempt a topological analysis of &(npri), but we base
on the foregoing considerations the conjecture that, under the restric-
tions (5.1), (5.2), and (5.3) and for any 5, < 0, the contractibility prop-
erties of E(ny;) are the same as those of €. .
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THE AGGREGATE LINEAR PRODUCTION FUNCTION AND
ITS APPLICATIONS TO VON NEUMANN’S
ECONOMIC MODEL!

By NicHoLas GEoRGESCU-RORGEN

In a series of studies Professor Leontief [1936, 1941] presented an
analysis of the strueture of the American economy through a new tech-
nique known today as the input-output relationships technique. This
was the first attempt to apply the general equilibrium theory to the
analysis of an economic reality.

A few years later Professor von Neumann [1937, 1945], making use
of similar simplifying assumptions, arrived at an extremely interesting
theoretical result for the general equilibrium theory, namely, that the
equilibrium conditions were actually fulfilled by at least one alternative
of the economie system.

The evidence that it is possible to analyze an economic reality from
the point of view of general equilibrium theory—provided one is willing
to grant certain restrictive assumptions and to undertake the difficult
task of computing the numerous input-output coeflicients—and that the
same type of simplifications enables us to establish more definite theo-
retical results explains the recent growing interest among economists in
linear economic models. This appears to be, in fact, a revival of the
Walragian assumption regarding the constaney of production coefficients
under a more general form.

The purpose of this chapter is to discuss the concepts of technological
horizon and of the aggregate linear production function—the latter is

1 The results contained in this chapter may be reproduced in whole or in part for
sny purpose of the United States Government, under whose contract they were
completed.

These results were presented for the first time on March 22, 1049, at & meeting
of the staff of Harvard Economic Research Project. The author wishes to acknowl-
edge the helpful criticism and the valuable suggestions of Professor Wassily W.
Leontief. It is hardly necessary to add that, for any faults the chapter may contain,
the author is solely responsible. The facilities of the Institute of Research and Train-
ing in Social Seiences at Vanderbilt Unijversity extended to the author in preparing
the final version are gratefully acknowledged. '
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analogous to the classical concept of production function—and to use
the concept of the technological horizon in proving the results obtained
by von Neumann for his economic model along lines more accessible to
economigts. The considerations of this chapter cover the more general
case where the set of given processes of production is not necessarily
finite but may have the power of the continuum.

The lagt point distinguishes the approach contained in this chapter
from the contributions of von Neumann and of Xoopmans, who have
considered only the case of a finite number of given processes.

1. LiveAr Processes

Let us think of an economy involving n perfectly defined commodities,

Gy, G, -+, Gn.  Let a;, b; represent nonnegative quantities of ;. An
economic transformation is the possibility of obtaining (by, b, --+ , by)
from (@, a2, - ++ , @»). This can be denoted by

ay, ag, =+ , Oy
1 (( )) , or ((ag; b))
(1) b b (a5 59)

The a's are inputs and the b's, outputs. But a transformation may corre-
spond to an actual process of production, transportation, training, con-
sumption, disposal activity, storage, ete.

To eliminate the economic transformation ex nihilo, it will be as-
sumed that at least one a; is positive or, in other words, that

(2) Z a; > (.

i=1

In some’ special cases the existence of the transformation (1) leads
implicitly to that of

Aay, Aag, -, A,
® (( )
Abp, Abg, -+, Aby
also, for any positive value of A. If so, the totality of transformations
{3) for » > 0 will be referred to as a linear process.
A linear process is completely determined by any one of its trans-

formations. The linear process defined by the transformation (1) will
be denoted by

(4:) P (ﬂ‘l;I Qg, * -+, an) P( b)
= LGy, 04).
bl’ b21 T bn
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The transformation actually used in defining P will be called the base
of the linear process. According to the definition of a linear process,

6)] P{a;; b)) = P(hag; \by)

for any X > 0. Therefore any transformation of P may be taken as
base. ,

The transformations belonging to the same linear process represent
different scales of production of that process. Thus ((Aa;; Mb;)) repre-
sents the scale of production measured by X if ((a;; b;)) is taken as the
unit of scale. Symbolically this is written

6) P(xai; Nb;) = NP{a;; by).

If all the transformations of a process can actually be carried out, the
process is called achievable.

The formulation of a linear process presented above is basically that
of von Neumann, which differs from that used by Koopmans or by
Leontief.

Indeed, process (4) eonveys two distinet pieces of information:

(a) that the transformation requires some preexisting stocks of com-

modities (ay, @z, -- - , @a);

(b) that the transformation brings about a modification of the stocks
(as, as, -+ - , &) determined by the differences (v1, va, - -+ , ¥a), Where
(") vi=bi —a;.

The ¥’s represent flows, and they may be positive or negative.

Koopmans’ formulation of a linear process takes into consideration
only aspect (b). In his notation a; corresponds to v, in this ehapter.?

As the eurrent production undeniably requires some preexisting stock
[information conveyed by (a)], the formulation of von Neumann is
preferred to the other for the purpose of this chapter. It must, how-
ever, be admitted that even formulation (4) presents some disadvantages
in handling certain economic problems. It does not offer more detailed
information regarding the inner circuits of flows. Relation (7) furnishes
only the ultimate result after all compensations between positive and
negative flows have taken place.

To help make this point clearer, let us think of a process requiring a
certain stock of electric generators, for instance, and produeing, among
other things, such generators at a speed just sufficient to keep the stock
constant. With adequate notation, thismeansa, = by. Thereis, there-
fore, no trace of the production and consumption of generators. The
corresponding flows have, so to speak, vanished from the picture. Some-

2 8ea Chapter 111, relation (1.4). Leontief’s formulation is & particular case of
(1.4} where only one flow is positive.
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times such disappearing flows do not raise any difficulty. This is so
if the corresponding commodity, @, is produced and consumed within
the same plant like, to cite an extreme case, the melted glass in a glass
factory. It isseen, therefore, that the problem of handling disappearing
flows is closely connected with that of defining and classifying the com-
modities. On the other hand, in actual applications integration of indus-
tries or of processes should be expected to bring about the disappearance
of some commodities. This may be the underlying reason why Leontief
ignores in his model the amount of output consumed by the industry itself
[Leontief, 1941, p. 14}.

To return to the comparison between processes as treated by von
Neumann and Koopmans, it is easily seen that, from the formal point
of view, the latter’s process can be assimilated to a particular case of
{4), namely,

~0y g — Q2% —(1',0, N (]
(8) P( 1,k 2 ¥ r.k b ),

01 0! R 0; Qrg1,ks ~° ' s Onk

where the a;, ; for j £ r are nonpositive, but not all null, and for j > r
are nonnegative. This may be written in the simplified way:

(9) P(al,k; a2,k * " aﬂ,k)?

which is basically Koopmans' notation. Therefore, most formal prop-
erties of a model based on process (4) will be, mutatis mutandis, valid
also for the corresponding models using formulation (9).

2. Tus TEcHNOLOGICAL HORIZON

The definition of a linear process given above (5) makes it possible to
represent P{a;; b;) in the 2n-dimensional space (a4, ag, <** , @a, b1, -,
b,) by a straight halfline A starting at 0, the origin of the coordinate
system, and passing through the point (a1, as, *-+ , @, by, -+, ba).
Any point on A represents a given scale of production of the process P.
Thus A is the only 7mage of P, and only one P corresponds to a given
A. For the sake of brevity, it will be possible, therefore, to refer un-
equivocally to the process P as the process A.

Two proeesses, Py and Pj, are distinet if, and only if, their images, 4;
and A,, are distinet.

LemMa 1: If Pi(asi; bis), Palass; ba:) are two achievable processes and
Ay, A, their respective images, any straight halfline A belonging to the angle
(A4, Ap) is the image of an achievable process P’

2 No ambiguity is invelved in the definition of the angle {A;, Ag) since this angle is
always < x/2, Aj, Ap being in the positive orthant.
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Let p(a;; b,) be any point on A, As this belongs to the angle (A;, 4;),
two points, p;(ay;, b1:), P2(az;, ba;), exist on Ay and A,, respectively, such
that

(10) a; =0y +ay bi=by+by (=12 -, n).

The transformation ((a;; b:)) may be regarded as the result of the
simultaneous transformations ((ay,, by;)), ((as;, bz)), and it is therefore
possible actually to carry it out. As any transformation belonging to P
can actually be carried out, the latter is achievable. Obviously,

ay; = May, bi: = Mbs, M>0

(11) (3=17 2, "'_,?’L),

i’

Gg; = hotp;, by = Agbas, N2> 0
and, with the help of (6), we may write
(12) P = 7\1P1 + )\2P2.

The process P will be said to have been derived from P; and P by
tntegration.

CoroLLArY: The images of all achievable processes form a convex cone.?

Let us now consider the technological information. By this is meant a
set of actually recorded processes achievable under the prevailing tech-
nological knowledge. This set, together with those processes derived by
integration from the set of those initially recorded, forms a set of achiev-
able processes (Lemma 1) which must be a convex cone, H (Corollary).
The cone I will be referred to as the technological horizon of the given
technological enformation’

The technological information may consist of a finite or of an infinite
set of processes. A process belonging to the technological information
will be denoted by

(13) Pilaw; ba),

where 7 represents an element of a given set, not necessarily finite but
having at most the power of the continuum.

+ A convex cone is here defined as a set (A) of straight halflines A such that, if
Ay, Az €(4) and, if the angle (A1, As) <, any A belonging to the angle (A, Ag)
belongs to (A). This definition does not include the ease of a convex cone consisting
of only two directly opposed halflines, A;, Az (A; and Ag are direetly opposed when
they have the same origin and together form a whole straight line.)

5 Relating the technological horizon to the technological information and not to
the technological knowledge aims at avoiding a definition which would not be opera-
tional. Indeed, if one tried to define the technological horizon of technological
knowledge, one would soon discover that it seems rather impossible to find a work-
able criterion according to which it could be ascertained whether all achievable
processes have been included in the horizon.
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If this structure of H is assumed, another question must be considered
from the beginning, namely, whether H includes its boundary or not,
ot, in other words, whether it is or is not a closed cone. At first glance
this question may seem to have no economic significance. This is not
so, however, as will be shown Iater on.° It will be assumed throughout
the subsequent parts of this chapter that H is a closed cone.

3. CompARISON OF LINEAR PROCESSES

At this point of the argument it is necessary to introduee an economic
criterion on which to base the choice between two linear processes. In
the search for such a criterion, it is realized immediately that the criterion
must involve (a) the value of outputs,

(14) V=2 b,
k=1
and (b) the cost of inputs,

(15) C =2 e
k=1

where Y (y, ¥a, - -+ , ¥») 18 & given price constellation of the ecommodities
G,

At the same time, sinee the criterion will be used for the choice between
linear processes (and not between economic fransformations), it must be
independent of the scale of production, whereas V, €, and V — C are not.

Replacing V (or C) by V /b, (or €/b;) will not solve the difficulty since
for some processes b, may be zero. Even if it were not so, the criterion
would then depend on the choice of &. The only simple criterion which
has at the same time a definite economic meaning seems to be

_ K _ Zbkyk.
C 2 a5k

The last expression represents the return to the dollar. Tt is made up of
interest rate and rate of profit.”

(16) ¢

¢ If the technological information consists of a finite number of processes, H is
always a closed cone. The gquesiion raized assumes decisive importance for tech-
nological information containing an infinite number of processes in connection with
the existence of economic equilibrium (see below, Section 6). One may see a relation
between the closedness of H and the continuous substitution of one factor of produe-
tion for another in the case where this substitution cannot be carried to the point
of eompletely eliminating one factor of production.

% Von Neumann makes use of ¢, speaking of it as a potential funetion with no
economic meaning attached to it. He expresses the opinion that “a direct inter-
pretation of the function ¢ would be highly desirable” [1945, p. 11.
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The return o the dollar fails, however, to lead to a definite value in
some special cases. This is so for all processes involving only free
goods (i.e., only goods for which y = 0). The value of ¢ will in this
case be indeterminate. We may dismiss these alternatives as absurd.
1t must not be overlooked, however, that economic theory, if it aims
at explaining anything at all, cannot adopt such a standpoint. All proe-
esses and all goods must be eonsidered in our initial data. The theory
has to explain why some processes are not used and why some goods are
free, and cannot take these results for granted.

To avoid the indeterminateness of ¢, von Neumann’s assumption that
for each commodity in every process

(17 ay + by >0 (k=1a2r"')n)

will be retained [1945, relation (9)]. We should not overlook the Iimita-
tions introduced thereby. In economic terms (17) means that all proc-
esses of the technological horizon must include every commodity, either
as input or as output.

With the same intention of avoiding the indeterminateness of ¢, we
shall assume that not all goods are free (i.e., at least one y; is positive),

(18) >u>0.
k=1

We shall further denote by ¢{P, ¥} the return to the dollar for the linear
process P and for the price constellation Y,

DermrrioN: For two given linear processes, Py and Ps, and a price
constellation, Y, the process Py will be called more profitable than Py if

(19) ¢(P1, ¥) > ¢(P;, ¥).

This definition is not basically different from that used in the ele-
mentary theory of the firm. Let us consider the two transformations
belonging, respectively, to Py and P, and such that the corresponding
input costs are equal, C; = C,. P, is more profitable than P, if the
values, V; and V,, of the outputs corresponding to these transforma-

tions are such that V; > V,. Obviously, if this is so, (19) is fulfilled,
and conversely.

Dermirion: If

(20) (P, Y) 2 ¢(Py, )

for every price constellation, P, will be called technically superior o P,.
We shall show this by writing symbolieally P; > P,.
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Condition (20) is equivalent to
(21) Cobuy)(Xaoryr) — (Charye) (Canuys) = 0

for all nonnegative values of ¥;. This does not lead to simple analytical
restrictions for the a’s and b’s.  Writing
(22) o = ik
Aik
for what may be called the productivity ratio of the commodity G in
the linear process P; a necessary condition for technical superiority,
casily derived from (21), is that ¢
(23) [ea] 2 [e2].
This is not, however, a sufficient condition.®
If in P, and P all outputs are zero except that of G, for instance,
(21) becomes equivalent to the classical condition that all average pro-
ductivity coefficients of P; be greater than those of P,
b b
(24) —z = k=12, n).
Ty A2k
Other special cases lend themselves to an immediate comparizon ac-
cording to (20). Thus it is obvious that

(25) P(a;; b)) < Pla; — Aag; by + Aby)
for
(26) [a] > [4e] Z 0, [AD] 2 0,

{but not simultaneously {Aa] = 0, [Ab] = 0), provided that P{a; — Aa;;
b; + Ab;) is also achievable.

2 At this point some notations used throughout the chapter need to be explained.
Thus [#} means the vector (1, x2, -~ , Tw). The relation {zx] > 0 stands for z; > 0,
29 >0, -++ , Tm > 0. The relation [z] > 0 means that some xx, bul nol all, may be
gero, while [z] = 0 will be used when 2 = 0 for all % is not an excluded alternative.

® The analytical difficulty of expressing (21) in terms of a’s and b’s and also the
insufficiency of (23) are shown by the following fact: the necessary and sufhcient
conditions that

() Al + 24pyye + Ay 20 for y, 3220
are

(i) Ap20, Ap20, Ap+VAudn20;
or, in alternative form,

@ if Ajp 2 0, then Apn =0, Agp 2 0;
) {(b) if 43 <0, then Al = Audm, Apn>0.

1t is easily seen that, for two commodities, the conditions (23) represent only Ay,
Ags 2 0, and consequently they could not be sufficient for (i).
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4. Tur AcerEGATE LinEar Propuction Function

If H is a 2n-dimensional cone, it has interior elements. If P is such
an element, then, acecording to (25), a process technically superior to P
and belonging to H can always be found. The use of the same procedure
to find a process belonging to H and technically superior to P can fail,
therefore, only if P belongs to the boundary of H. {(H contains its
boundary since we assumed it to be a closed cone.)

Now let P°(a?; b%) belong to the boundary of H, and let

(27) LM) = 3 Awa+ D B =0

k=1 k=1

be a supporting plane of I passing through P®. This means that

(28) L(P% =0
and that
(29) LP)z0

for all P e H. The necessary and sufficient condition that all processes
Po(a? — aa?; b + AbY) for [Ad®] = 0, {Ab°] = 0 (but not both [A¢°] = 0,
[AB’] = 0) be outside of H is that a supporting plane (27) exists for
which L(P%) < 0 for any such P’ Because of (28), this condition
becomes

(30) — 2 AzAd} + 3 Bpab <0,
k=1 k=1

which yields

31 [A]z0, [Bl=soO.

The case of both [A] = 0, [B] = 0 is excluded by (27). The condition
{(31) eliminates from H some additional processes which are technically
inferior to some others though not necessarily all such processes.

The set of processes of the boundary of H which have not been so far
eliminated will be referred to as the aggregate linear production function
and denoted by F. The processes belonging to F will be called efficient.t

10 Of, Gale [XVIL, Theotem 5] and Koopmans [IIT, Sections 3.5 and 4.4] for corre-
sponding statements regarding polykedral cones. A proof of this statement for
nonpolyhedral econes can be based on a statement by Bonnesen and Fenchel {1945,
top of p. 5, passage in italics].

1 This term was first introduced by Koopmans and applied to economic trans-
formations [III, Section 4.2]. Obviously, all transformations of an efficient process
are efficient.
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It can also be shown that the aggregate linear production can be ex-
pressed in terms of a continuous function. Because of the eonvexity of
H, a continuous homogeneous function,

(32) y =fla;b),

can be found such that ¥y = 0 on the boundary of H, y < 0 for the
interior of H, and ¥y > 0 in all other cases.? The aggregate production
function will therefore be determined by

(33) fa;b) =0, fla — Aa;b+ Ab) > 0
if [l = [ad]20, [AB] = 0.

The concept of aggregate production function can be applied to a
single industry, to a group of industries, or to a closed economy, the
the latter being defined as the totality of all processes of production and
consumption—including consumption of consumers’ goods as a labor-
producing process as well as any other achievable process.

The aggregate production funetion F leads to two eategories of iso-
curves:

(1) the output isoguants (analogous to the classical isoquants of the
production function) obtained by all poinis of F for which [b] is a con-
stant;

(2) the input isoquants (analogous to the classical opportunity cost
curves) corresponding to [a} constant.

The relations (29) and (31} lead to the following coneclusions:

(1) The output isoguants are convex toward the origin of the coordinate
system (a).

(11) The input isoquanis are concave toward the origin of the coordinate
system (b).

(iii) Any input yields decreusing returns with respect to any outpul.’®

The first two results show that in a linear model the marginal rate of
substitution is increasing for inputs and decreasing for outputs.

It ig worth stressing that the properties regarding the marginal rate
of substitution and the marginal produetivity, (i)—(ii), are direct eon-
sequences of the linearity assumption (56) and are, in a way, structural
aspects of the linear models. For nonlinear models these assumptions
have to be infroduced as distinct technological laws.

It can be shown that, by integrating nonlinear processes, we may
obtain output isoquants concave toward the origin, if the assumption of
increasing marginal rate of substitution is not explicitly introduced. As

12 This follows immediately from Urysohn’s Theorem [Sierpinski, 1934, p. 71].
13 The result (iii) was also obtained by Koopmans for hiz model [II1, Section 4.101.
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an illustration let us consider two processes of producing B, with limita-
tional factors 4; and A,,

(a) b = fila), Gz = Ay,
(b) b = falay), a2 = pa.

Their integration leads to the isoquants determined by the system
35) ai+a =a;, A bpay =0y  fild) + foler) = b,
which yields

day _ uft — N d’dy  (u—N)
dao, fi—Jf2  dal  (i— )P

Tt is seen that, if no other process besides (34) exists in the technological
information, the isoquants of the integrated process may have any shape.
If, however, the principle of decreasing marginal rate of substitution is
accepted, and if the output isoquants of the integrated process are eon-
eave, it follows that achievable processes other than those deduced by
integration must necessarily exist and that our technological information
is incomplete.

In this light the law of increasing marginal rate of substitution appears
as a criterion which, in certain cases, will signal the absence of some
processes from the technological information. Whenever conecave out-
put isoquants are obtained, this is so. The criterion works only by its
negative side, in the sense that if the isoquants are convex it does not
necessarily follow that the technological information is complete. This
accounts for the absence of any such criterion in the case of linear tech-
nological information.

@0 |

(36) ()2 + 2 (f1)3.

5. TurusTRATION OF EconoMic EquiniBriuM IN A CLOSED
Linear MonEL

There are different ways of defining the economic equilibrium in a
model, closed or open. We shall illustrate the way the problem of eco-
nomie equilibrium of a linear model can be handled by considering a
closed economy where all processes are of von Neumann’s type. The
model will consist of a certain technological horizon, H, and certain
economic principles describing the mechanism of the model. These
principles may lead, through a process of elimination, to a certain set of
processes and to certain price constellations. If so, these processes and
price constellations constitute the equilibrium of the model. It is
obvious that, when the equilibrium of the model is defined in this way, the
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equilibrium may (i) exist and be unique, (ii) exist and be indeterminate,
or (iii) not exist at all. To find out which of these alternatives is true
constitutes the most important question in dealing with an economic
problem.

The two following economic principles will be used here for describ-
ing the mechanism of the model:.

(a) Given a price constellation, that process will be chosen which will
maximize the return to the dollar or, what comes to the same thing,
that process which for a given cost of input will maximize the value of
the output [the most profitable process to the entrepreneur; see (19)
above).

(b} Given a process of production, the competitive forces of the econ-
omy will bring about that price constellation which makes the return
to dollar a minimum (i.e., which will make profits zero and the rate of
interest the smallest possible), In a closed model such as the one de-
geribed here, the only social cost is waiting, and its cost is the interest.
Therefore we may say that the price constellation brought about by the
competitive forces will make the social cost minimum [von Neumann,
1945, relations (7 **) and (8 **)].

Von Neumann proves that in a model where H consists of processes
defined as in Section 1 and where the principles (a} and (b) are ac-
cepted, there is at least one price constellation ¥* and at least one process
P° which fulfill the conditions (a) and (b),

@7) $(P°, Y% Z &(P, Y°),  &(P° ¥°) = ¢(P°, 1),

for any P ¢ H and for any ¥. The alternative proof given in the next
section does not, require the number of processes in the technologieal
information to be finite.

6. ALTERNATIVE ProOF OF voN NEUMANN'S RESULTS

For the argument of this section we retain the assumption contained
in (17) and also assume that I is a closed cone. By intersecting the
technological horizon H with the linear space

(38) St 2 b =1,

we obtain a convex, bounded, and closed point set, I'' To each point
of T' there corresponds a unique linear process of A and vice versa. It is
therefore possible to refer unequivocally to a point of T' as a process P.
On the other hand, any constellation of prices (assumed nonnegative
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and not all null) can be represented by a unique point of the simplex §
defined by

(39) Zuw=1
The return to the dollar is therefore a funetion, ¢(P, Y), of a point
P eT and of a point ¥ € 8.

THroREM 1: For a given P, ¢ reaches its greatesi lower bound in S.

It is always possible to renumber the variables (commodities) in such
a way that, for a given P,

bl' b2 b3 bf
;:;:;:-o-:;:p’

(40) ; =0 "
—kéu'>,u for k>
G

The greatest lower bound (g.1b.) of ¢ over S is reached for the price
constellation ¥z, for which

(41) yr =10 for &> r,

the other prices for k¥ < r being subject only to the condition > jy; = 1.
Therefore

(42)  glb.overSof ¢ = ¢(P} = ¢(P, Yp) = u < (P, Y),

where Y is any price constellation.

The value of g will be referred to as the rafe of growth of the process
P. Since not all a; can be zero, by (2), the rate of growth is always
finite. The integer r will be called the rank of P.

TueoreM 2: The function $(P) is conlinuous over T,
Since the function
(43) 2, = b/ay

is continuous at all points for which a; = 0, we can, for any positive &,
find oy, B such that, for all | ékl < ag, l N ‘ < B,

b_k_bk+’?k

ar ozt e

(44)

< B

Some restrictions will have to be imposed, such as ax < az, 8¢ < by, and,
1f bk = 0, then M é 0.
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If a = 0, b, > 0 for a given uy, then we can find o, B; such that
for all 0 < é < ak, | me | < Be < by,

(45) (bx + m)/ex > i

Let us choose 8; < & < (u — u), up > u'. From (40) it follows that
the minimum of ¢ for any P{a; - €; by + ) lies between p — § and
p -+ & if e and n; are such that (44) and (45) are fulfilled. This proves
the theorem.

Since I is closed and bounded, we have the following:

CoroLLARY: ¢(P) reaches its smallest wpper bound in T,

Norarion: Let M be the maximum of ¢(P) over T and let I = T
be the set of processes P® for which

(46) (P%) = M.
Also let ¢ be the minimum rank of the processes belonging to T°,

TuroreM 3: There are o commodities for which

(47) —_— D= —— =t v = —— am
for all P eT°.

Let P* ¢I'® be a process of rank o satisfying (47) and P2 1" such
that, for some k = o,

(48) Wlas > M.

If this were 0, the process £, P' -+ z,P? (71, 22 > 0;2; + 23 = 1), which
evidently belongs to I', would either belong to I'® but have a lower rank
than the minimum, ¢, or have a rate of growth greater than the naxi-
mum, M.

CoroLuArY: The set I° is conver.
THEOREM 4: If P €T, it is impossible .to have
{(49) by/ap > M
for ail values o k =o.
Let us assume that there is one F ¢ T for which
(50) by = May + v, v, > 0,
forallk < 0. Let P%be a process belonging to ' and having the rank .
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It follows that

(51) ) = Mal 4+, w >0,

forallk > ¢. Let T be the maximum of

(62) (Mag — bg)/vi
fork >a If
(53) zo/2 > T, Tg, > 0, otz =1,

the process zP + 2oP° would have a rate of growth greater than the
maximum one,

Turorem 5: A price constellation Y° with yi = 0 for all k > o can be
Jound such that, if P® ¢T°,

(54) $(P°, Y°) = (P, Y?)
Jor any P eT.

Let us consider the mapping of I' by which to each element of T' is
made to correspond the element

(55) (Mal - bl: Ma2 - b2) Pty Mac' - ba)s

and denote by 9 the set of all points (55). The set 9 is closed and
convex. According to Theorem 4, 9% has no points in the interior of
the negative orthant, @7, and, since the origin of the coordinate system
belongs to 9, the origin is a2 boundary point if 9N is ¢-dimensional.
Therefore a plane passing through the origin,

(56) O(Ma — b) = 2, (May — by)y, = 0,
1

can be found such that II(Ma — b) = 0 for any [Ma — b] e and
{Ma — b) £ 0 for any [Ma — b] « 2~ [Bonnesen and Fenchel, 1934].
Since (56) is a supporting plane of the negative orthant, we have
(4] > 0.4 If M is not o-dimensional, it will be contained in at least
one plane with the same properties as (56).

1 This statement can be proved as follows: The vectors V0,0, ---, ~1,0, ---,0)
(k = 1, ---, o} belong to @7, but they cannot all belong to (56). Let Vi, Vg, -+, ¥,
(0 £ s < o) be those vectors belonging to (56), and Vayq, Veygz -+, Vo be those

not belonging to (56). It follows immediately that g = 0 for X < 5, and 3 > 0
fors < k = a. Henee [y] > 0. This provides an extension of Theorem 3 of Chapter
XVIIL
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Under all circumstances, if ¥ is the constellation (31, 2, -+ , ¥e O,
.-+, 0) where ¥, ¥s, - - - , Yo are the coefficients of the supporting plane
(56), and if P T [i.e., (Ma ~ b) ¢ M}, it follows that

a

(57) 2. (May, — byx = 0,
1
or

20 bue
(58) o(P°, ¥) = M 2 -

Z arYe
1

It is worth stressing that Y° may not be unique and also that y;
may be zero even for some k £ 0.

= ¢(P, Yo)'

TrroreM 6: If T is a (2n — 1)-dimensional set (or H a 2n-dimensional
cone), the set T° belongs to the boundary of T.

Instead, we shall prove that, if P® ¢ T? were an interior element of T,
a process P* ¢ I' could be found having a rate of growth greater than M,
which is an impossibility.

Indeed, if P® were interior to T, 2n processes P*(a’; b*) belonging to T
could be found such that

2n 2n
(59) PP=2 dP, []>0, ZZa=1,
i=1 1
and such that
2n
(60) S APi=0
=1
does not admit a solution [A] # 0.
The system of inequalities
2n
(61) > by — Mial) >0 k=12 -,n0),
i=1
where
(62) My = bg/a'g)

admits a nontrivial solution [«*]. The necessary and sufficient condi-
tion for the existence of this solution is that the convex hull defined by
the points

(63) my{by — Mka;lc, i — M ka%, T bﬁ" — M)
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should not contain the origin [Dines, 1936, Theorem 2]. This is easily
seen to be so since, according to (60), the system

n
(64) 2 welbh — Mial) = 0 (=12 ---,2n)
k=1
does not admit a nontrivial solution.

On the other hand, we can always assume that [a*] > 0. Indeed,
if [a] is replaced by [a”] in (61), the system will be satisfied with the sign
> replaced by =. Therefore, if [«*] is a nontrivial solution of (61)
and if z* and z° are positive scalars, z*[a*] + 2°[°] will be another
solution of (61). If z* and z° are appropriately chosen, it is always
possible to have z*{«*] + 2°[a?] > 0.

If [«*] > 0, E?"a’; = 1, the process

2n
(65) P¥* =3 afP!
1

belongs to T'.  But, according to (61), P* has a rate of growth groater
than M. This proves the theorem.

Simple examples may be constructed in order to preve that, if T is
not a (2n — 1)-dimensional set, P® may be an interior point of I if the
latter is considered in its proper dimensional space.

7. SuMMARY AND CoNcLUDING REMARKS

The results of the preceding section may be summarized as follows:

(a) Given any linear technological horizon, there exists at least one
equilibrium process (by Corollary to Theorem 2).

(b) All equilibrium processes have the same rate of growth, which is
the greatest possible one {(by Theorem 3).

{¢) There is a group of commodities, Gy, G, - -+ , &, which have the
same productivity ratio, (22), in all equilibrium processes. Therefore
the latter are of the form

(66) P° (

@, Qg Tty Gy Qo ey p )
H
oM, aaM, -, @M, gy M + sy, -, @M + u,

with u;, = 0, and form a convex set (Theorem 3 and Corollary).

{(d) If the technological horizon is a 2n-dimensional cone, the tech-
nological information must contain at least one equilibrium process.
(This follows from Theorem 6 and the fact that I is, by Corollary tc
Theorem 3, a convex set.) Therefore M and o can be derived by examin.
ing only the processes contained in the technological information. If
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however, the technological horizon has fewer dimensions than 2n, all
processes should be taken into consideration in order to determine the
equilibrium solutions. :

(e) There exists at least one equilibrium price constellation (Theorem
5). It must be of the form

(67) Yo(yla Yo, * s Yoy 0; 0; Tty 0)-

(f) All commodities G which have a productivity ratio greater than
the maximum rate of growth in at least one equilibrium ‘process are
necessarily free goods. These correspond to % > ¢. But other com-
modities may also be free because some y; (X = o) may be zero in the
equilibrium price constellation.

(g) The return to the dollar for the equilibrium solutions cannot be
greater than that for any other price constellation or lower than that
for any other process, because of (42) and (54). This is the saddle
point property,

(68) o(P°, YO 2 (P, Y), &(P° Y% = ¢(P, YO)

(h) Considering orly the commodities which are not necessarily free
goods, it is seen that the equilibrium process is unique but that the same
may not be true for the equilibrium price constellation.® The latter
conclusion leads to rather uncomfortable economic results, Thus some
goods may be free according to one equilibrium price constellation and
have a positive price according to another.

In order to illustrate the unsatisfactory type of price equilibrium which
may be obtained in many cases, we shall refer to the technological hori-
zon defined by the following two processes:

Plal=1, ai=1  bi=1  Bl=1),
Pg(a% = 3) a’g = 2) bilz =2, bg = 3)-

The only equilibrium process is P!, which leads to a stationary
economy. However, the equilibrium prices are subject only to the
condition yz < 1. This could hardly be regarded as a determinate
economic equilibrium [see Champernowne, 1945, pp. 14-15].

(i) Despite the fact that some goods may be ad libitum either free
or not, the equilibrium rate of interest (the return to the dollar for null
profits) is unique and will not be affected by the shifting of some goods
from one category to another,

1 The apparent symmetry of prices and quantities ends here,



CHAPTER V

RELAXATION PHENOMENA IN LINEAR
DYNAMIC MODELS!®

By NicHoLas GEORGESCU-ROEGEN

In a short article published in the first volume of Econometrica, Ph.,
Le Corbeiller {1933] pointed out the possibility of using relaxation phe-
nomena as a model for business cycles. However, Le Corbeiller’s sug-
gestion has found little echo among economists, and the literature shows
only sporadic references to his paper. Paul A. Samuelson [1947, p. 339],
speaking of this possible approach, admits that practically nothing has
been done along this line. The only economic problem which could be
regarded as having something to do with relaxation is the famous eobweb
problem, but this has been developed independently of any relation to.
the coneept of relaxation.

Le Corbeiller’s article was inspired by the work of B. van der Pol
[1926]. Relaxation phenomena occupy an important place in modern
physics. The difficulty in dealing with such phenomena is that, al-
though most of them are of a periodic nature, this periodicity cannot be
described by a sine curve. An example of a relaxation phenomenon is
found in a hammer which strikes in a periodie way.2 Obviously, de-
seribing such a movement involves additional difficulties in comparison
with the case of the movement of a pendulum. The latter has a sym-
metric periodicity, the former, an asymmetric one. This is due to the
fact that the movement of the hammer can be decomposed into two
distinct phases, one before and one after the energy is released through
the shock. The two courses of the hammer, toward and away from the

! The results contained in this chapter may be reproduced in whole or in part for
any purpose of the United States Government, under whose contract they were
completed.

The results were presented for the first time during two meetings of the staff of the
Harvard Economic Research Project in April, 1949, The author wishes to acknowl-
edge the many inspiring discussions with Professor W. W. Leontief regarding the
topics developed here. It is hardly necessary to add that, for any faults the chapter
may contain, the author is solcly responsible. The facilities of the Institute of Re-
search and Training in the Social Sciences at Vanderbilt University extended to the
suthor in preparing the final version are gratefully acknowledged.

t For other examples from the field of physics, see Le Corbeiller 11931].
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object being hit, take place under two different regimes which lead to
two different phases of its movement.

However, not all movements that have an asymmetric periodicity are
relaxation phenomena. A ball moving without friction over the surface
of & washboard with asymmetric waves does not involve any relaxation
in the sense used by the writers mentioned. In the latfer sense, a
relaxation phenomenon takes place only when the difference between the
‘“yp” and ‘“‘down” swings is’ created by a certain discontinuity in the
regime. Such a discontinuity will introduce a discontinuity in the speed
of the movement (at least in size or in direction}. Therefore the move-
ments related to each phase will be described by a different function.?

The aim of van der Pol’s contribution was to approximate these two
different functions by a single analytic function. This was achieved by
considering the periodic solutions of the differential equation

d*y dy

m p T - Do +y=0

for large values of ¢ By this procedure the analytical difficulty was
solved from the practical point of view. But this veiled the real mean-
ing of relaxation, which is the discontinuity of the regime. Indeed, as
has already been pointed out, periodicity in the classical sense is a
secondary aspect of the oscillations of relaxation. In economics, where
most of the so-called periodic phenomena, such as business eycles, for
instance, are treated as periodic phenomena in the classical sense only
in order to simplify the problem, the discontinuity aspeet retains its
full significarice. This point of view finds an admirable illustration in a
dynamic model presented by Leontief in & paper read during February,
1949, before the staff of the Harvard Economic Research Project. The
contribution contained in the present chapter has its origin in the
author’s attempt to answer one problem raised by Leontief in his paper.

The dynamic model presented by Leontief is an extension of his earlier
static model [Leontief, 1941]. It is defined by the system

") Z) = @z + by#y + bada,
1
Tz = a2y + brofy + baods,

where z,, 2 are output flows, &, &, are derivatives with respect to time,
and the a’s and b’s are constants.

¢ From the point of view of the Dirichlet definition of a function, this distinetion
is not possible. However, the laws of the movement, being derived from certain
differential equations of an algebraic, or at least analytical, structure, are, in general,
analytie functions. As any analytic function has an individuality of its own, it is a
perfectly justified attitude to regard two such functions as distinct,
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The system (F;) takes account of the fact that production requires
both input flows and stocks (or inventories). In this particular formula-~
tion, inputs and stocks are supposed to be proportionate to outputs. The
ratios between input flows and output flows are referred to as tnput
coefficients (or @'s), and the ratios between stocks and outputs are the
capital coefficients {or b's).

The system (F,) leads to the classical solution

zy =g eMt 4+ czekgt,

(81)

Ty = e + couge™®,

where ¢, and ¢s are integration constants determined by the initial values
of z; and 2. Leontief assumes further that at a turning point, defined
in terms of #; (the change of the demand for 2y), a discontinuity is
introduced in the behavior of the entrepreneurs such as to make by; = 0
in (F;). The next phage of the system will, therefore, be defined by the
equations

1 = an%s + 0 + bayds,
(F3)

Zy = Q127 -+ biafy + bogis,

and will last until the demand for x; has reached a certain level deter-
mined by the one which existed when the second phase began,
The solation of (F2) is

ae™ + e,

: ’ ’
Ty = 1™ + v,

1

(S2)

where the integration constants, ¢; and c,, are determined by the splicing
conditions, namely, that (S;) must start from where (8,) left off. Conse-
quently, ¢y, ¢ are indirectly determined by the initial values of 2y, Za.

When the second phase (F;) begins, if it ever does, the new values of
the constants ¢; and ¢; will have to be determined by the new splicing
conditions between (Sp) and (S;), and so forth. It is clear that the
problem when handled in this way raises almost insuperable technical
difficulties, and one may even ask, as Leontief did, whether it would be
possible to predict in a finite number of steps the final outcome of the
system.! _

* An analogy, used by the author elsswhere, may aid in grasping the essence of
such a question. It is kmown, for instance, that the decimal digits of the trans-
cendental number = cannot be determined unless this is done step by step. For
numbers such as 7/23, any decimal digit can be determined in a finite number of
steps. The question raised in the text is whether the system has the structure of x,
i.e., so that the prediction of any phase requires the actual splicing (and knowledge)

of the preceding one, or the structure of a rational number, i.e., o that any phase
can be computed without necessarily knowing the preceding ones.
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It is the purpose of the present chapter to offer a way of answering
such a question and to develop a method which can be applied to the
study of almost all economic problems where a relaxation phenomenon
ijs present. A more general concept of periodicity, of undoubted im-
portance for economic theory, will also be Introduced.s

1. Let us think of a system, (3"), which is subject to two different
regimes, B and Ry. Assume that two rules, r, and ry, are also given
which govern the switching of the system from regime E; to R, and
vice versa. If from a given initial position, (3 ¢}, the system develops
under regime R,,® the movement of the system is completely determined
up tof = «?

The evolution of the system may be described by the sequence

(") Fy, Fy, Fy, Fy, -+

where F; and F; represent the phases corresponding to B; and R,. The
sequence (F) may be finite or infinite.

Such a scheme constitutes a special type of periodicity, which we shall
refer to as phase-pertodicity. This is a generalized concept of the classical
poini~periodicity. 'The economie cycles seem to be better described by
phase-periodicity than by point-periodicity, since the relevant aspect
of the business cycle is the recurrence of the phases and not the repetition,
after a constant time-lag, of the same values.

- Phase-periodicity, as defined above, implies a relaxation phenomenon
every time the phase changes. Moreover, it is more general than the
relaxation osecillations considered in physies, the latter usually being
only point-periodie.

The first problem which arises in connection with a phase-periodic
scheme is that of finding out whether or not the sequence (F) is finite,
and further, in case (F) is infinite, to determine whether or not the sys-
tem has an asymptotic movement. If it has, economists would say
that the dynamic model tends toward a unique equilibrium.

"

¢ The author wishes to emphasize that the object of this chapter is not to appraise
the merits, from the point of view of economic theory, of the models used here to
illustrate the analytical method devised to deal with relaxation phenomena in
economics. Moreover, in the case of Leontief’s mode] this would have been impossible
because Leontief’s contribution is not yet available in print.

s This assumption is absolutely neeessary. The choice between R and Rs as the
initial regime is therefore supposed to be made according to some oufside criteria
if the whole evolution is to be considered as having a beginning. This would no
longer be necessary if the system were considered as already in movement, in which
case the sequence (F) below has no beginning. In some ecases, however, a given
initial condition may be compatible with only one of the two regimes R), Ea.

7 Provided, however, that situations do not exist where the rule ry (or rz) becomes
self-contradictory.
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Different types of schemes may be conceived. We shall deal with
those which are more likely to be met in economie dynamie models.

2. A simple model to illustrate the relaxation phenomens would be
one where capital accumuiation during the up-swing period of the busi-
ness cycle would obey a dynamic law different from that governing capital
decumulation during the down-swing. Such an approach would, indeed,
be more realistic than that of mest dynamic models construeted so far.
These assume that both phases are governed by a reversible law.

Let us assume that the aggregate dynamic laws governing the accumu-
lation {or decumulation) of capital during the two phases of the eycle
are represented, respectively, by the equations

2 -0, Lope
() "'fl( ): E—f2( )J

dat
thus making the change in capital stock a function of the existing stock.

The problem of deseribing the evolution of the system has a simple
and immediate solution if the system of partial differential equations,

5 aC © ac c
3) §—f1 ), E—fZ( )
is integrable. Let

(4) C = ¢, 7)

be the integral of (3), and ¢ and 7, the lengths of the kth first phase
and of the kth second phase, respectively. These lengths are deter-
mined by the rules r, and r,. The movement of the system is described
in terms of the single function (4):

C=¢(iti+t,2n) O =2t= tanr),
1 1
(5)

® n—1
C=¢(Zti,2ﬂ'+f) 0=1=7m).
1 1

8 This point was clearly emphasized by Leontief in his paper. Leontief pointed
out the deep significance of the turning point in a business cycle, which goes far
bevond the mere formal sspect of changing slope. Use of Leontief’s argument is
made here solely to illustrate the usefulness of the relaxation concept in economis
theory.
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In three-dimensional space function (4) will represent a surface and
ruleg r; and rp will correspond generally o fwo curves (r;) and (rp)
(Figure 1). The movement of the system will be described by a path,
Cy, Cy, Cs, --- , on the surface ¢. Therefore the whole problem of
phase-periodicity can be followed by considering the path ¢y, €1, €9, - - -
on the {0r plane,

H

c :

FigorE 1 -

It is seen that the value of C at any moment depends only on the
lengths of time obtained by summing time separately for each phase.
Therefore the complete evolution of the system can be predicted in a
finite number of steps.

It is easily seen that the system will tend toward an equilibrium if
either one or the other of the following two conditions is fulfilled:

(a) the curves (r;) and (rg) meet at a point F, at a finite distance or at
infinity (i.e., they are asymptotic);

(b) the two curves (r,} and (ry) do not meet, but, for { = -,

®) Iim ¢ = Lim ¢.
along r along r2
If E is at a finite distance, the equilibrium will be reached over a finite
period of time; in all other cases the system will only approach equilib-
rium,?
Economie models can be found which fulfill the integrability econdition,

? Such a conclusion implies evidently that rules #; and ¢ never lead to a contradic-~
tion. Such would be the case if, in order to go from (r1) to (r2) along co, €1, €2, <+« , it
were necessary to move in the negative direction of time.
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but they have an exceptional structure and their applicability will there-
fore be very limited.?

3. A two-variable linear model subject to relaxation oscillations ean
be described in general by the two systems

&y = Myzy + Miaz,,
(M) .
Zg = Moz + Mopzy,

. 1 = Nnx + Niors,
) _
&2 = Nayxy + Nogxa,
each representing one of the regimes B, and Ra.
From the first system we obtain

7N (Mayxy + Magzs) dzy = (Myyz1 + Myams) diry,

which represents a one-parameter family of curves, (M), in the plane
7,0z5. Through each point of the plane—except the origin of the coordi-
nate system which is a singular point—passes one and only one curve,

1]

()
Py
~1
(M) ()
/|
(N)
4
o 7 777 X3
Figure 2

Given the initial position of the system, Py(z?, 23), the latter will follow
the curve (M) passing through Py (Figure 2). If the system starts

18 As Samuelson, who read the manuseript, further pointed out, in such models
the rates of capital accumulation and deeumulation at the same level C are in a
constant ratio (which obviously must be negative). This follows immediately from
the integrability condition of (3): F{(CH//HC) = f5(C)/F(C). Henee f1(€) = kfa(C).
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from any point belonging to the same curve (M), it will have the same
evolution. This is why the curves (M) will be called isodromes.

It is worth stressing that the evolution of the system described by
an isodrome is time-less but not sequence-less. This does not disturb
completely the utility of such a description for economic theory, for the
latter deals very often with dynamic formulations of this kind. Indeed,
many economic statements tell what will happen next but do not con-
sider the more delicate question of predicting also exactly when.

Equation (7) is not, however, equivalent to (M), for (7) determines
only a family of curves and the ¢sodromes must have a direction. There-
fore (7) must be supplemented by information regarding the direction of
movement. This can be derived from (M) and formulated in terms of
the sign of dzy (or dzg).t

The shape of the isodromes (M) depends, as is known, on the nature
of the roots, Ay, Mg, of the characteristic equation
® My —x My —o.

M May — A

In drawing the shapes of the isodromes it is a great help to keep in

mind the properties of the straight lines

9) Mz, + Moz = 0, Moz + Magzs = 0,

representing the loei of the points for which dx; = 0, drz = 0, as well
as those of the lines

(0 (M1 — M)z + Mgz = 0, (M1 — Ag)ay + Mgz = 0,

representing the loci of the points for which the changes in outputs
(dx;, dxz) are proportionate to the outputs (:51, z2}. [The lines (10)
are not necessarily real.]

A seeond family of 1sodr0mes is determined by (N). If the curves
(r) and (rz) are added to the picture, then, from any initial position,
the evolution of the system (x,, z;) is perfectly determined. This is
deseribed in general by a cobweb-like path (Figure 2) with finite or
infinite turning points, depending on the particular shapes of the curves
here involved and on the initial position.

A simple illustration of the above scheme is the famous cobweb prob-
lem of supply and demand. In this case the isodromes (M) and (N)
are given, respectively, by the differential equations

¢y dr = 0, dy = 0,

11 The isodromes will not be altered if the right-hand sides of the system (M) are
multiplied by the same (arbitrary} funetion of (x1, 2) of constant sign.
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where z is price and y 1s quantity. The rules r; and r; are represented by
the demand and supply curves,

(12) z=D@), y==8@&.

The direction of movement on the isodromes (M) is toward (r;), and
on {N) toward (rp).

4. The Leontief model is a particular case of the model considered in
the preceding section. '
From (F;) and (F,) we obtain

| b lifh = B11x1 + Biaxy,

(13)
| b li’z = fa121 1 Ba2%s,
where
B11 = bas + a12bs, Biz = —(bg1 + agibay),
(14)

Bay = —(biz + a12bn1), B2z = b1y + azbys.

An alternative formulation of the same system can be made in terms
of stocks. The proper stock of the commodity G, in the industry produc-
ing Gy is bygxy. Therefore, Xy and X, being the total stocks,

(15) X1 = buzy + barzs, Xg = bpax; + b2azs.
Furthermore,
(16) X, = o1 — ans, Xp = 25 — arom1.

Eliminating z, and z», we obtain a system similar to (13), namely

Xy b b2y Xy by b2

(17) Xo byo bys | =0, Xo bip by |=0.
X, 1 —dg X, —az 1

1t is further seen that

(18) |8l =1{a]| {0l

We shall not deal with the case |b| = 0, where the system (13) is
either impossible or indeterminate. But let us consider the special case
where | a| = 0. This leads to

(19) (b11 + b12021)a12 dzy + (baz + b21012) dz2 = 0,

provided z; — azjzp # 0. Therefore the (M) isodromes are parallel
straight lines. It is seen that the direction of movement depends on
the sign of | b |, except in the case where the initial position of the eco-
nomic model] lies on the straight line ; — 02122 = 0 (or 23 — @22 = 0)."
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In this case we have dx; = 0, dzs = 0. This means that the straight
line zy — ag;x2 = 01is the locus of static equilibria. If the system is not
in static equilibrium from the beginning, the system will tend toward
such an equilibrium along an isodrome (19) if | b| <0, or away from
statie equilibrium if l bl > 0. (Figure 3 represents the case \ b | < 0.)
If | b| > 0, we have a typical case of unstable static equilibrium.

Xy

\‘x?, x9)
0 \\

FiGURre 3

Furthermore, if the initial position is not one of static equilibrium,
the economic system will not be static, nor will it expand at a constant
rate of growth. Nevertheless the rate of interest will be zero. This con-
stitutes a peculiar example of the rate of interest being zero, though the
stocks are not constant. Only their total value remains constant.

If 7 is the instantaneous rate of interest and py, p2 the prices of the
two commodities, the equality between prices and average cost leads to

(br1py - bizpe)i + auspe = p1,
(20)
(barpy + bogps)i + asipr = Pa.

Ag prices must be positive, we have

b1z — 1 biat

1) (i) = 113. 121. + a2 ~0
boit + @21 bogi — 1

and

(22) (bt — 1)(bioi + a12) <0, (ba1t + ag1)(bei — 1) < 0;
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the last two relations being equivalent if taken together with (21). Let

a; 1
{23) 4y = the greatest (— ——k) , 73 = the smallest (b_)
ik i
As
(24) 3(1:0) > 0: 6(?:1) < 0;

{21) has a root between 4y and 7;. It is casily seen that this root is the
only one which satisfies (22). This, therefore, is the equilibrium rate of
interest.

But

(25) e(©) = | a =| G

as; — 1

Hence the rate of interest will be positive or negative according to
whether|a| > or < 0. When | a| = 0, the rate of interest is zero.

From (20) it follows that the rate of growth of the value of total stocks
is equal to the rate of interest,

(26) (P1X1 + p2X0)i = p1 Xy + poXo.

If £ = 0, the value of the stocks, p; Xy 4+ p3X2, remains constant.
Let us now consider the case in which { a| 5¢ 0. The characteristic
equation of (13),

@7 YOO =B\ — (B + B2 +|a| =0,
has the real roots A; and Mg, since
(28)  (Bu1 + Bz2)? — 4| a| | b| = (B11 — B22)® + 48128 > 0.

There are several alternatives, which shall be examined in turn.
() | 8] >0, |e| > 0. This leads to Az > A\, > 0. From (28) it
follows that

(29) Bi = M|b| >0,  Bu—2Adb| >0,
and consequently the straight line (8;),

(30) (B11 — Ml b )21 + Braze = 0

or

Ba171 + (Baz — M| b D)x2 = 0,
lies in the positive quadrant only for k = 1; it also lies between
(A b l&1 = Briz1 + Bratz = 0,

(31)
(A2)| b|#a = Barzy + Booze = 0.
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All the isodromes are tangent to (§1) in 0. The direction of movement
is away from the origin (Figure 4a).
If the initial position belongs to (§;),

(32) Iy o= MT, &2 = N2y,

and the system will expand at a constant rate of growth. In all other
cases, sooner or later, one of the outputs, z; or zs, will expand at the
expense of the other until this becomes zero. The dynamic equilibrium
is, in Samuelson’s sense, unstable [Samuelson, 1947, pp. 266 ff.].

X3 A,
b

4,

0 1
Ficure 4a Firaure 4b

(b) [8] <0, aj <0. Thisleads to Ag < A\ < 0. Tt is seen, in a
similar way, that the shape of the isodromes is the same as those of
{a), with the exception that the direction of movement is toward the
origin. The economy will end in all cases by contracting toward zero
production. The dynamic equilibrium is stable.

(¢) |b| <0,|a| > 0. Thisleadstors < 0 < ). The shape of the
isodromes is that shown in Figure 4b. In all cases the system ends by
expanding and tends toward the same equilibrium position represented
by a point at infinity on (§,). The dynamie equilibrium is stable.

(d) |b] >0, |a| <0. This leads to A; <0 < As. The shape of
the isodromes is similar to that of Figure 4b, but the sense of the move-
ment is reversed. The dynamic equilibrium is unstable.

Sumiming up the preceding results shows that (i} the sign of | b
decides the dynamic stability of the system, and (ii) the sign of | a
determines the sign of the rate of interest (i.e., whether the system is
contracting or expanding).

1t is also seen that the existence of a static solution in von Neumann’s
sense [von Neumann, 1945} (i.e., where the economy will expand (or
contract) proportionately in all sectors) is possible only if the initial
position lies on (51).
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If the system (F,) is now considered, it is seen that | b | becomes
(33) b = —bysbay <0,

and consequently the system will be dynamically stable [cases (b) and
{e)]. TFurthermore, (13) becomes
34) by = Bz + Praxa,
big = —byaty + azbiats. -
Consequently A, in (Fy) is identical with A, in (Fy).

Leontief’s rules of change from (Fy) to (F2) and vice versa are for-
mulated, respectively, in terms of #; and of the value of z; at the begin-
ning of (F,). It is easy to see, by using the results of (a)(d) above,
that these rules permit one change at most from (F,) to (Fg). This is
due o the fact that the difference between (Fy) and (F3) does not affect
the rate of growth since | a | has the same sign in both phases.

5. A better illustration of the phase-periodicity is provided by the
Hansen-Samuelson mode! [Samuelson, 1939].  For a continuous formula~
tion of this model let ¥ be the flow of national income at the time ¢; ¢,
consumption; I, private investment; and g, governmental expendlture
The Hansen equations can be written 2

¢= oy — a'y,
(35) I=pg%
y=I+c+yg,

with 0 < a £ 1, and &/, g positive
We obtain, further,
ay = ay — ¢,
(36) ”
Be=y—c—g,
which, through the simple transformations
o'T af’
@7 t="—, p=2, y=v4+7 c=0+-2

@ o l -« l—a

where T is a new time unit, becomes
oy =¥ —-C,
gt =Y — .

12 Bamuelson’s formulation is dizcontinuous {Samuelson, 1939, p. 76]. It must be
remarked that Samuelson’s formulation, and therefore (35), does not reveal the
source of g [Samuelson, 1939, Table I]. A model in which g is treated in a more
explicit way would constitute a better analytical tool. The incidence of tax shifts
are considered in the concluding part of this chapter.

(38)
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This is a linear dynamic model of type (M), the characteristic equa-
tion being

(39) afN (@ — A+ 1 —a=0,
Under the assumption that a £ 1, the solution of (38) depends on
the position of («, 8) with respect to the eurve (Figure 5)
48
a = oer————
(14 8)*
8=1

(10)

A — — b

B, B,

FiGuRe 5

The shapes of the isodromes are represented in Figure 6 according
to the region where (o, 8) lies. The result can be summarized as
follows:

Region Stability *

¥ Perfect
ANBRE Perfect

B: Perfect.

B, N B, Unstable (cyclic)
By Unstable

B N¢ Partially stable
c Partislly stable

* Stability is considered here in Samuelson’s sense (1.e., stability is perfect when
any displacement, although shifting the system to another isodrome, will not change
the limit toward which the system tends). This limit may be regarded as a possible
static solution, The term ‘“‘partially stable” refers to the case where the system will
tend toward the same limit only for some (not all) finite displacements [Samuelson,
1947, p. 262].

13 Cf. Samuelson [1939, p. 78]. The regions considered here differ somewhat from
those used by Samuelson.
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(B,} (B,NBy)
Fiaure 6

Tf we now assume that, soon after income reaches its maximum (i.e.,
Y = 0), the propensity to consume, «, increases [Duesenberry, 1948;
Modigliani, 1949], or 8, “the relation,” decreases, or both these things
happen simultaneously, there will be a turning point at which a relaxa-
tion phenomenon will take place. As an illustration, let us assume that
only 8 decreages from 8 = 1 to a point in B;. The system will become
a contracting one instead of a cyclic one. If we assume still further
that, as the consumption-income ratio reaches a certain level, the value
of B will recover its former value, the system will follow a cobweb path
which will lead, generally but not necessarily, to a contraction toward
the origin.

Finally, another illustration of the usefulness of the analysis based on
isodromes is given by the question whether a fiscal policy aimed at
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€

{B;)

(B,NC) (C)
Freure 7

decreasing consumption and increasing investment could definitively cure
a system having a tendency to consume all its income. The answer is
easily obtained by inspecting the shape of the isodromes in Figure 7.
If the assumptions underlying the model and also those regarding the
invariability of « and # under changing fiseal policies are accepted, it
is seen that in the case of C and By N C one shift through taxation may
be sufficient definitively to cure the tendenecy of the system toward
disinvesting. In all other cases the tax must be applied periodically.
Furthermore, in order to insure the shifting of the system to a “higher”’
isodrome by means of only a small tax, the tax must be applied imme-
diately before the income reaches its maximum (i.e., before the isodromes
reach the straight line oY — ¢ = (),
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USES OF LEONTIEF'S OPEN INPUT-OUTPUT MODELS!

By Harran M. Surra

Tt is the purpose of this chapter to explain Leontief’s open input-
output models, to discuss some of their uses and limitations, and to sug-
gest an alternative model.

1. Tar Basic NomoN orF AN Inpur-OurPuT MODEL

The economy of a country may be divided into any desired number of
sectors, called industries, each consisting of firms producing a similar
but not necessarily homogeneous product. Each industry requires cer-
tain inputs in order to produce a unit of its own product, and sells its
product to other industries to meet their ingredient requirements. One
“industry’’ is households, which furnishes its product (services) to other
industries in return for consumer goods (household inputs). Govern-
ment may be ireated as an industry which makes payments to other
sectors of the economy in return for goods or services and which provides
services (its product) the costs of which are met principally by tax levies
on the other sectors of the economy. Foreign trade is treated as an
industry whose inputs are exports and whose product is imports. In-
vestment is treated, not as a separate industry, but as a portion of the
inputs of the several industries.

The transfers of products among the various sectors of the economy
can be shown in a table which can be read both vertically and hori-
zontally. Read horizontally, each row shows the disposal of an indus-
try’s total product for the given year among other sectors of the eco-
nomy. Read vertically, each column shows the total inputs used by
an industry in the given year in production and investment. Eqgua-
tions (1) represent in generalized form the distribution of each industry’s
produet:

11 am indebted to Professors Tjalling C. Koopmans and Paul A. Samuelson for
helpful suggestions in the preparation of this chapter.
132
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Xy =y — g~ =Ty — = A =0
—Zyigt X2 — T3z — = Tig — = Tuz =0
(1)
—Zy — Xy — kg — ot Xy —e = T =0
—Zin = Tgn — Tan — " — Zin — -+ Xa = 0.

The large X’s stand for the total physical outputs of the industries, in
units of a dollar’s worth of each product in some base year. Each
small z indicates the quantity of a produect, denoted by the second sub-
script, used by the industry, denoted by the first subscript.

The relationships between the amounts of various produets consumed
by each industry and the total output of the industry may be represented
by a set of input coefficients,

aix = Zin/Xs

If we assume the input coefficients to be technologically fixed, the eco-
nomic system may be represented by the following set of linear homeo-
geneous equations:

Xy~ anXe — auXs — - — aaXi =~ anXp = 0
—a X1+ Xp—agXs— - — Xy — = anpXn =0
(2)
—a1:X; — a3:Xp — a3 Xs —- -+ Xi—o— 0niXn =0
— 01, X; — a2, Xy — @anXp — - —@inX; — -+ Xp =

This system of n equations in n unknowns will have a nontrivial solu-
tion only if its determinant, D, vanishes. In that case we can solve
for the relative values of the variables uniquely if not all the minors of
D vanish. Specification of the absolute level of any element of the
equations then determines the absolute level of all the variables. A more
complicated closed system has been developed by Wassily Leontief
[1941] to represent the American economy.

2. OreNn MopeLs anD THE Concerr oF FiNAL DEMAND

In the above we dealt with a elosed system which had no exogenous
variables. We now examine what may be called open models in which
certain of the variables are treated as determined outside the models
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(i.e., certain variables are determined independently of the relationships
which define the models and are taken as given so far as the models are
concerned}.

In two articles [1944, 1946a), Leontief asks what quantity of output
and employment in each industry is associated with (and necessary for)
the production of a given bill of goods, called final demand. Final
demand is, in one case, a given quantity of household purchases of
various products. If households are represented in equations (1) by the
subseript n, the last term on the left side of each of these equations is
transferred to the right side and treated as a constant or fixed bill of
goods for the production of which certain outputs of other industries
are required. In gystem (2), the last equation is deleted, and the last
term on the left side of each remaining equation is replaced by a constant
on the right side; thus an open model is obtained. The equation
system so obtained is -

Xy — Xy —anXg—--— anX;—-- - — 1 Xm = Tny

a12X;) + Xp — ageX3 — - — apX; — - — @ueXm = Taz

@y e
—a1Xy — Xy — a3 Xy — -+ Xi—-ro— GuiXm = T
—imX1 — QX2 — QgnX3z — - — @GmXy — -+ X = Tum,

where m is short forn — 1,

If we do not restriet the choice of the bill of goods (za1, -+ , Zam),
this system can be solved only if the new determinant, D, of its
coefficients in the left-hand member does not vanish. The solution for
X, -+, X is then as follows:

.X[ = Au.’«l’?nl + Alzx,.g + Alsxﬂg + e + Aua:m; + e + Almx,,m
Xy = Aa1Ta1r + Ao + doseg +- -+ Aoin; ++ - -+ Aonum
X3 = Ag1Ta1 + Azo¥ne + Azsaz +- -+ Agitas + -+ Asnom

X%' = Ailxnl + Aizxﬂ2 + Ai3zn3 +-- Aiixni -t Aimxnm

.........................

Xon = Ap1Tny + Amotaz + Apztnz + -+ Anittni T < -+ Amnam.

The dependence of output and employment on the final demand in
each industry is now apparent. The term Aj.2z,2 represents that part
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of industry 1’s output which is due to the final demand for z,2 units of
commodity 2. This magnitude is based on the technical input coeffi-
cients of all the industries except households.

Also, employment by industries can be obtained by applying the ap-
propriate (labor) input coefficients to the expressions for total outputs

given in (3). Thus employment in industry 1 depends on the items in
the bill of goods as follows:

Tin = 0aXy1 = Q1pAd 11201 + @1l 10Zme +- -+ A1nd 1mTrm.
Employment in industry 2 is related to items in the bill of goods similarly:
Tan = 02 X3 = Qond21%a1 + G2ndastne + -+ AzndomTom.

Total employment is the sum of such expressions for every industry;
sumining these expressions and collecting terms yields a coeficient for
each element of final demand. ¥For example, the total labor coefficient
of Zn1 18 {@1nd11 + Gonday +- -+ Gmudmi). This indicates the con-
tribution to total employment per unit of commodity 1 entered in the
final bill of goods, and hence Leontief calls this a total employment
coefficient; the direct employment coefficient for z,,, is in this case the
first term in the parentheses. (For the ith consumption good the direct
employment coefficient would be g;,44.) If the final demand for com-
modity 1 is changed, the change in employment in industry 1 is given
by applieation of the direct employment coefficient and the change in
total employment by application of the total employment coefficient.
Leontief has computed such coefficients on the basis of 1939 data, the
economy being divided into ten industries, plus households (consump-
tion data being the bill of goods), and labor input coefficients being
based on actual number of persons employed rather than on value (i.e.,
wage) figures.

Similarly Leontief investigates the output and employment in each
industry dependent on foreign trade. In one model the bill of goods
is constituted by total U. 8. exports plus domestic investment plus house-
hold consumption; in another model, household consumption is excluded
from the given bill of goods and treated as a dependent variable along
with the inputs and outputs of other industries; in a third model, the
bill of goods consists of U. 8. domestic and foreign investment (the latter
being an export surplus of various products). These models differ from
that dealing with final household demand alone in that different sets of
equations and hence different sets of input coefficients are discarded in
making the computations after the selected inputs have been transferred
to the right side of the equations and treated as constants.
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3. LiMrraTions oF LEONTIEF's METHOD

Although there are no limnits to the number of models which might be
congtructed on the above lines, there are certain limitations to any such
models. In any open models constructed like those of Leontief, a reduc-
tion of the bill of goods to zero reduces the outputs and employment of all
industries to zero. This does not make very good sense. If, for exam-
ple, domestic and foreign investment constituted the bill of goods, we
would not expect their disappearance to reduce output and employment
in all industries to zero. Leontief recognizes this shortecoming of his
models and suggests that the use of & linear employment-consumption
relationship results in a probable overstatement of the volume of em-
ployment dependent on any given bill of goods [Leontief, 1946a]. Leon-
tief could have corrected this defect by iniroducing a set of constant
terms into the household input equations as follows: z,; = @n:iX,n + Kns.
The statistical determination of these constants would be necessary,
along with the determination of the input coefficients; this would be a
difficult task.

The concept of final demand itself implies a certain limitation of the
uses to which the above type of open model may be put. Such a model
cannot answer the question, “What is the total effect on output and
employment in each and every industry if some one industry makes a
new investment for which it uses suech-and-such quantities of various
products?”’ Suppose, for example, that industry 1 makes a certain in-
vestment the effects of which we wish to investigate. This investment
is in the form of an outlay for certain quantities of products of other
industries and comes in addition to the outlays for ingredients required
for the production of eurrent output of industry 1 with a given produc-
tive process. Any manipulations of the input-output model which leave
the input of industry 1 in the matrix will treat those inputs as entirely
dependent on the output of industry 1 and thus prevent the introduetion
of an independently determined amount of investment. In order to
treat the outlay of that industry as an independent variable, we may
transfer the inputs of the industry to the bill of goods and drop the
appropriate equation from the system. When this is done, the chosen
investment may be made by increases in various items in the bill of
goods, and the effects on the ocutputs of other industries may be com-
puted. However, if the other industries use the produet of industry 1
in their productive processes, an increase in their outputs will entail
greater current production by industry 1 in order to meet their facior
requirements. But, by placing the inputs of industry 1 in the bill of
goods, their magnitude was fixed; industry 1 is “not allowed” to increase
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its inputs further in order to increase its output. If we repeat the proc-
ess and insert the newly required inputs as another “independent’ in-
crease in the bill of goods, this raises the same problem again when its
effects are computed.

The results on other industries of the new Investment by industry 1,
as given by an open model with the inputs of industry 1 in the bill of
goods, may be interpreted in either of two ways. We may say that
the model excludes the “feed-back’ effects (i.e., the repercussions which
flow from the fact that the expansion of the system requires an increase
in the output of industry 1 and hence a further increase in its inputs).
The full effect could be obtained from the model only if the correct
final input totals of industry 1 were placed in the bill of goods, but these
totals are not known in advance merely from the size of the investment
to be made.

An alternative interpretation may be given the results of the model.
It may be assumed that the increased use of the product of industry 1
by other industries is made possible either by drawing upon inventories
of the product or by the use of some inputs by industry 1 for current
production instead of for the intended investment purposes. In such
cases, however, the computed employment coefficients do not measure
the effect of an investment of a prescribed magnitude since the initial
(or intended) investment is offset by disinvestment (or failure to invest)
to an extent unknown and dependent on the magnitude of the feed-
back effects. The model gives the total effect of a net investment
smaller than that which we wished to introduce, and relates that effect
to the bill of goods magnitudes, which magnitudes must be taken to
include the feed-back effeets on industry 1 of a lesser initial investment
by the industry.

In the open model which places the inputs of an investing industry
in the bill of goods in order to compute the effects of investment by
that industry, then, we must interpret the coefficients which relate
items in the bill of goods to output or employment in the several indus-
tries as either ruling out the circular effect on the investing industry or
as rclating part of the final effect to all of it. Owing to the element of
cireularity, the model cannot tell us the relationship between some initial
stimulus and its final effect, for a further addition to the inputs of the
investing industry, consequent upon the response of other industries to
the investment purchases, must itself have further effects on the supply-
ing industries. This fact limits the usefulness of the open models we
have discussed; they show only the outputs of various industries asso-
ciated with a given total quantity of inputs (or total increase in inputs)
in the bill of goods.
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The concept of final demand is appropriate, however, to a different
type of inquiry. We may ask, for example, “What will be the pattern
of production and employment associated with any given volume of
exports or of household consumption of each product?”’ Leontief’s open
models are designed to answer this type of question.

The different open models discussed by Leontief, and the alternative
models of the same type which could be construeted, do not, however,
yield identical sets of coefficients showing the relationships between out-
put or employment in the various industries and the final demand for
each product. The different construction of the several open models
(i.e., the transference to the bill of goods of the inputs of different indus-
tries and the elimination of different equations and sets of input coeffi-
cients) necessarily results in different relationships between a unit of
final demand and the output of any industry. Thus, when Leontief
investigated the employment associated with a given household demand,
household inputs were placed in the bill of goods and the household
equation was dropped from the system; when the effects of exports were
being investigated, exports were placed in the bill of goods and the
foreign trade equation was dropped. But there is no reason why an
increase of a unit in final demand for some product should require
different amounts of employment in various industries depending on
whether that unit of some product was exported or was obtained by
households, by investors in one industry or in another, or by government,

The technique.of producing the product is the same in any case, so
the problem could be regarded as one of investigating the effects of an
increase in output of some product without regard to the industry
classification of the purchasers of that additional output. Which open
model of Leontief’s, or of the same type, gives the answer, then, to the
question, “How much employment in each industry is associated with
a specified increase in the total output of some product?”’? Strictly
speaking, none of the models answers the question in just this form.
Each model tells only how much added employment in each industry is
associated with a given final increase in consumption of a product by
the sectors of the economy whose inputs constitute the bill of goods of
that particular model. Each such result is based on the assumptions
which determine uniquely the structure of each model. These are as-
sumptions concerning which industries produce under conditions of fixed
input coefficients and concerning the absolute input quantities of the
remainder of the economy, the bill of goods containing in each case the
inputs of the industry for which the effects of increased outlays are being
investigated. Structural steel for a bridge might be used, for example,
by the railroads for a railway bridge, by the government for a highway
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bridge, or might be exported for construction of a bridge in a foreign
country. The employment required in the various industries to produce
the steel does not really depend on which of these three dispositions is
made of the stee]l. But the input-output models will give three different
answers as to the employment effect, for, in the.one case, the bill of
goods would contain all railroad industry inputs; in another, the govern-
ment inputs; and in the third, exports; and different equations would
be dropped from the system in making the computations in these three
cases. This makes the relationship between the increase in the total
output of a commodity and the associated increases in employment in
the various industries depend on the industry elassification of the con-
sumer of the additional output of the commodity in question. Thus,
even for the type of question which the open models discussed have been
designed to answer, they give answers whose interpretation is severely
restrictive.

The problems of circularity and of the interpretation of the results
given by different input-output models are essentially problems that
were noted in discussions of the theory of the multiplier. Each of the
models discussed above makes different assumptions about induced
effects,? and consequently a different result follows, for a different
formula is involved in the computations. Just as each change in the
definition of the multiplicand requires the use of a different multiplier,
80 a change in the definition of the bill of goods requires a different set
of employment coefficients to relate items in the bill of goods to total
employment in the various industries. However, if what we want to
know is the total effect of a given autonomous change in outlays for a
cerfain product by any sector of the economy, then a formula or coeffi-
cient which rules out eertain induced effects is not useful for the purpose,
even if accurately computed on the basis of its own assumptions. It is
in the category of what Samuelson has called a “pseudo-multiplier”
[Samuelson, 1948].

4, AN AuToNOMOUS-EXPENDITURE MODEL

The following open input-output maodel can be used to escape the
limitations of the models discussed thus far. It is characterized chiefly
by a bill of goods in which all autonomous expenditures are placed.
In order to admit the circular effect explained above and to get coeffi-
cients, not varying with the industry classification of the spending unit,

2 Changes in the inputs of an industry due to changes in the industry’s output are

induced changes; excluding different equations from the matrix in different models
is a change of assumptions regarding induced effects.
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which relate a given additional input to the total consequent increase
in employment in every industry, it is necessary to include every indus-
try and its input coefficients in the matrix used for the computations.
Howsver, if the input coefficients of the closed model are used, no indus-
try can increase its investment inputs relative to its output, and an
attempt on its part fo do so must lead o an infinite rise in all variables
of the model. A bill of goods including all autonomous expenditures
cannot be added to the closed model except by an appropriate adjustment
of the input coefficients.?

If the bill of goods is to represent autonomous expenditures (inputs)
by any and all industries, adjusted input coefficients may be obtained
by classifying the inputs of the base period by whether they were or
were not dependent on and required for the production of the current
outputs of the industries using them (i.e., by whether inputs represented
necegsary or autonomous expenditures). The latter may be placed in
the bill of goods and the former used to compute input coefficients.
However, it is very difficult to make thig distinction between autonomous
and induced inputs in statistieal data. If one is interested in predicting
the cffecis of future changes in certain inputs, the data of some base
period are at best a guide to the choice of appropriate input coefficients
for the model. It may be possible, therefore, to use supplementary
information, such as technological data on input requirements, in
estimating the input coefficients applicable to the situation being
studied.

There are two industries, in addition to households, which were dis-
cussed above, that are not restrieted to the same degree as other indus-
tries by technological factors in the relationships between their total
receipts and their specific outlays. These industries are government
and foreign trade; their inputs may be treated as autonomous if so
desired. Government expenditures per dollar of total reeeipts may be
rather freely varied by legislative bodies. This provides an argument
for excluding government input-output ratios from the model and for
placing government inputs in the bill of goods as autonomous. THowever,
some government expenditures may be “automatically” increased under
a given set of laws as government receipts rise or fall. For example,
unemployment insurance payments may increase as tax receipts fall,
Expenditures which vary with government receipts may be treated as
induced by dividing the government inputs into autonomous and in-
duced parts and inserting into the matrix the input coefficients applicable
to the latter part.

3 The mathematical reason for this statement lies in the vanishing of D in (2).
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Increased imports may not call for immediate increases in exports
and in any case may be paid for by equivalent exports of products in
any proportions. The justification, if any, for using a particular set
of input coefficients for foreign trade, instead of placing exports in the
bill of goods, must be that the coefficients indicate the likely increases
in exports induced by an increase in imports.

Bince some investrent may be induced rather than autonomous, in-
vestment inputs, by all industries, should be divided between induced
and autonomous investment, with the former covered by .the input
coefficients and the latter in the bill of goods. The bill of goods of this
model should then consist of all autonomous expenditures and the
minimum household consumption of the various products. The model
go obtained would again be described by equations (2a), but the inter-
pretation of the quantities occurring in the right-hand members (bill of
goods) is changed as indicated.

A model constructed in this faghion may be said to provide a means of
breaking down an aggregate multiplier into specific multipliers, each of
which indicates the total effect on output or employment in a specific
industry of a given autonomous expenditure on (i.e., increased input of)
a specific produet. The breakdown is made on the assumptions of
fixed input coeflicicnts and unemployment, but the results are invariant
with respect to the industry classifications of the spending unit.



Crarrer VII

ABSTRACT OF A THEOREM CONCERNING
SUBSTITUTABILITY IN OPEN LEONTIEF MODELS

By Paur A. SaMUELSON

Leontief [1941, 1946a) assumes that total production of each of n out-
puts, zy, - - , T, is divided up into final outputs, €y, -+ - , Cy, and into
inputs used to help produce (with labor) all the inputs. Hence, for all 4,

mi=Ci+ZxJ'i (’i=1)2:"':n)-
1

Labor, the (n — 1)th good, ean be thought of as the sole “primary
factor’” or “nonproduced good,” and its given total is allocated among
all the different industries as follows:

Zogr =0+ 20 % nti.
Jj=1
Note that joint products are ruled out, so the zy’s are functionally
independent.
Sinee Leontief works with so-called “fixed” coefficients of production,
it is usually thought that he must try to approximate reality by a produe-

Xki
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x
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Ficure la—Equal out- Figure 1b—General
put curves for 3 with fixed equal output curves
coefficients. for =.

tion function of the form shown in Figure la, rather than of the more

general form admitting of substitution as shown in Figure 1b.  Actually,

all his theory in its present form is compatible with the more general
142
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case of substitutability. With labor the only primary factor, all desir-
able substilutions have already been made by the competitive market, and no
variation in the composition of final output or in the total quantity of
labor will give rise to price change or substitution. Only the circled
points in Figure 1b will ever be observed. The following discussion
shows that this is a property of the efficiency frontier always reached
under competition.

1. Let each good be subject to a production funetion, homogeneous
of the first order,

5 Zi, n+1
(1) x = Flzy, 2o, <+, T nt1) =ml’z:(_', R )
m m
Our equilibrium requires that any C, such as €, be at 4 maximum subject
to fixed values of total labor, 1, and all other ’s; that is,

n
¢ = Fl(ﬁfu, T1zy ", 321,n+1) - E L1
=1
is to be a maximum subject to
n
(2)  Flwn, @iz, »++ 5 Tiymg1) — 2 250 = s (t=23, - ,n),
i=l
n
0— E Lingl = —Tpgl,
i—1

where F,,, the amount of labor produced, can be set equal to zero.
We have the n(n 4 1) variables of the form z;; to determine. We as-
sume that with a finite amount of labor some finite quantity of each
good 1s producible.

2. Because of homogeneity or constant returns to scale, the coefficients
of production, a;; = x;;/x;, are not constants but are connected by a
relation of the form Fi(a.1, @iz, - - , @i, np1) = 1.  Except for seale, this
is shown in Figure 1b. Nevertheless, the following remarkable theorem
holds:

Turorem: Regardless of the assigned values of Ca, Cs, -+ , Cn, Zpqa,
the optimal coefficients of production will always assume the same constant
values, and the resulting production-possibility schedule for society wiil be
of the simple linear form

K:Cy 4+ KsCy + - - -4 KuCp = x4,

where the K's are constanis independent of the C's and z,,,. It is also
true that relative prices of the form P;/P; will be similar constants.
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Proor: Form the Lagrangian expression
n n
3) MO+ Mz~ 2 ap — Co) + NFs — L zjz — Co) +--+,
=1 =1

and differentiate it with respect to each z;, treating the A's as undeter-
mined multipliers with A; = 1. This gives vs

i

(4) N

“-)‘J':O (?:5112:"':n;j=1)2:"':n+1)~

Tij
We can eliminate the Mg to get the equations?
aF,
dry | dmedry  dwy i=1,2 - ,n+1).

aF;aF,— aFl (12=2,---,n;

(5)

There are, by (5), 1 + (n — 1){n 4 1) equations to determine our
n(n + 1) variables x;;, Their economie significance in terms of prices
or equivalent marginal rates of substitution is easily expressed. The
missing n equations are supplied by the specified C’s and z,;. It may
be added that, if we admitted the case of joint production, this simple
elimination of the X's would not be possible.

Since each of the F-functions is homogeneous of order one, each of our
partial derivatives must be homogeneous of order zero (i.e., the eco-
nomic assumption of constant returns to scale implies that all marginal
productivities depend on the proportions of the inputs alone). Hence
the set of equations in (5} may be written so that instead of their involv-
ing (n% + n) z;7s they involve only the n? proportions of inputs of the
form b;; = %;;/%i, i1, where ¢ and § now range only from 1 to n.

Equation (5) determines all the proportions, by;, independently of the C's
and x,;. With proportions always being invariant, it follows that we
observe only one invariant set of “coefficients of production,” a;;, and
the remaining assertions of the theorem are elearly implied.?

3. All the above is valid on the assumption that the partial derivatives
of equations (5) exist everywhere and define a unique interior solution to

1 Because of the necessary convexity of the F's, each of whosge Hessian is required
to be negative semidefinite, these necessary first order equations for & maximum
are also sufficient. If some z;; does not appear at all in F;, then we drop the ecorre-
sponding equation in (4), replacing it by z; = 0. 'We also make obvious modifica-
tions in (5). If a good uses no labor, we must modify our use of b's in & simple and
inessential! fashion.

2 have assumed that the price ratios are the same thing as (marginal} cost ratios,
as indeed they will be if something of both goods in question is being produced.
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(5). In the usual problems of linear programming, where only a finite
number of aetivities are considered, the functions have corners at which
the partial derivatives are undefined, and the optimum solution is de-
fined by boundary inequalities rather than intorior equalities of the
partial derivatives. Also, we must consider the possibility that more
than one set of values satisfy equations (5).

Nonetheless, the theorem remains true; a change in the bill of goods,
Cy, -+, Cp, cannot make substitution profitable, and the frontier of
efficiency points remains linear. A sketch of a brief but rigorous proof
is as follows:?

First, we accept the easily proved fact that the efficiency frontier de-
fined by our maximum problem must be a convex set in consequence of
our strong homogeneity assumptions. We then show that through any
efficient point there passes a linear hyperplane of feasible points. Tt
must follow that the frontfier locus is itself a linear hyperplane, for,
if it anywhere had a corner or a curved surface, it would be impossible
for us to find a hyperplane of feasible points going on all sides of the
efficient point in question.

The only problem is to show that through any efficient point, (C?,
CY, ---, €2 2. ), there does go a hyperplane of feasible points,

n

Zai(Ci - C?) = Tptt — ﬂ?2+1,

1

for some constant a's. Suppose that there really were absolute con-
stant a;’s. Then it is a well-known property of Leontief systems
{Leontief, 1941, 1946a] that the bill of goods is constrained to follow a
linear hyperplane by the equations '

"
Ci = z; — 2 @ity t=12---,n),
1

"
Tl = _Z @, n+ 1L
1
Consider now an actual efficient point (C3, €2, -+, C2, 22,,) being
produced in the general case of Figure 1b by (22). These quantities
implicitly define a set (o). Although it may not be obvious that it is
efficient to stick to these fixed coefficients, the result will certainly be
feasible. Hence there does exist a set of feasible points along a hyper-
plane through (C°, 22, ), and the theorem follows.

3T believe this argument is closely related to the more elaborate argument of
Koopmans [VIII}
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Less heuristically, we can easily show that

n
C: = Filtaa, tixi, -+ ) — E Trilk,
1

ki3
—Tpp1 = =~ 2 2% npilh,
1
define, because of the homogeneity property of the F,, linear parametric
equations in terms of the £s; for all the s equal to one we get (C?, - -+ |
C?, 221 1), and for all nearby t's we get feasible points on a linear hyper-
plane.
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ALTERNATIVE PROOF OF THE SUBSTITUTION THEQOREM
FOR LEONTIEF MODELS IN THE CASE OF
TIIREE INDUSTRIES

By Trarung C. Koormans !

In the preceding chapter [V1I] SBamuelson arrives at an important
theorem which shows that Leontief’s model of interindustry relation-
ships has a greater generality than a literal reading of its assumptions
suggests. In this theorem it is assumed that

(a) ecach industry produces only one commodity, and

(b) cach industry consumes, besides the commodities produced by
other industries, only one scarce primary factor (labor), and that factor
ig the same for all industries.

Assuming, further, constant returns to scale in each industry, Samuel-
son finds that, even if each industry has a choice of many alternative
processes for the production of its commodity, it is compatible with
efficiency of production as a whole that each industry uses only one of
the processes available to it, and this same process can be used regard-
less of the commodity composition of the net output of all industries
taken together and regardless of the amount of labor available.

In this chapter a proof of this theorem is given which does not require
that the alternative processes available to each industry can be sub-
sumed in a production function possessing derivatives. We shall merely
assume that the (finite or infinite number of) processes between which
choice can be made by each industry have the properties associated in
another chapter [IIT] with the notion of an activity:

(¢) all inputs and outputs of a process can be multiplied by a non-
negative scale factor (divisibility), and

(d) net outputs of different processes available to an industry can be
added together to make a new available process (additivity).

Assumptions (¢) and (d) are also made by Leontief for the (unique)
processes characterizing the several industries. Assumption (¢) is im-

11 am indebied to K. J. Arrow and L. Hurwicz for valuable comments regarding
this chapter,

147
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plied in Samuelson’s assumption of homogeneous production functions
(constant returns to scale), but his counterpart of {(d) is the more restric-
tive assumption of differentiable production functions.

We shall explicitly use two further assumptions:

(e) it is possible for each industry to select a process from among those
available to it, and a scalar level of its operation, such that the total
net output of all industries is positive for each commodity (except, of
course, labor), and

(f) the net output vectors of the alternative processes available to any
one industry with a given labor input form a closed and bounded set in
the commodity space.

Assumptions (a}, (b), (¢), and (d) have no economic meaning as a
model of production unless Assumption (e) is satisfied, and Assumption
(e) is implied in Leontief’s model and in Samuelson’s discussion of it.
An explicit eriterion for its validity has been given by Hawkins and
Simon [1949] for the present model. In Chapter II1, Section 3.6, the
same criterion, Postulate Cy, is explored for a more general model.
Arrow has proved [IX, Section 3] that a slightly weaker assumption,
Postulate C; of Chapter ITI, Section 3.6, together with a further assump-
tion excluding certain degenerate types of technology matrices, implies
Asgumption (e).

Assumption (f) i sufficient but not necessary for the validity of the
theorem. A refinement of this assumption is also given by Arrow [IX].

In the present chapter only the case of three industries will be con-
sidered. The proof given here is generalized by Arrow in the next
chapter to n industries. It appears in that generalization that the
‘“visual” elements, intentionally employed in the present proof because
they aid intuitive understanding, are not essential to the mathematical
argument. We now formulate in mathematical terms the theorem to be
proved.

THEOREM: 2 Let there be three closed and bounded conver sets, Sy, Sq, Sa,
of points, y = (w1, Yz, Ya), tn three-dimensional space with the following
properiies:

i aq) = (a1, 21, @31) 81, then a;3>0, ax S0, a3 £0,
(1) {4 a@ = (012, 922, G32) €S, then ay; 0, as >0, az £0,
i a@ = (@13, 023, G33) €83, then a3 =0, as2 £0, aag >0,

¢1 am indebted to Saunders MacLane for valuable discussions concerning this
theorem.,
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Let- there :exi.srst ﬂfree poings,? a('l) €Sy, afg) €8s, 0';3) €83, and three scalar
weights, ©y, T3, T3, such that

%1 = anz) + agars + alazs > 0,

() Yo = ay ¥ + aho7s + apry > 0,

Ya = a2y + gy + agey > 0,
and

3) t=ai+z+a 020 520 520

Denote by T the set of those points y of the convex hull S (as defined below)
of 81, 85, and 83 which (a) belong to the closed positive octant P defined by

(4) =0, ¥220, ¥ =0,

and (b) are such thai no different point, y* = (yi, ¥3, u3), exists in §
which saligfies

(5) MZy, By, V2V

Then T is o plane triangle with one vertex on each of the positive coordinate
azes, and such that oll ils points y can be obtained through linear combina-
tton
r rr r

Y1 = % + aprs + 05373,
(6) Y2 = anmy + apTs 4 s,

Ys = ag1 + agTs + 0gts,
of the same three points
{7 aq €81, G €8s, ag €Ss,
with scalar weights, 1, %9, T3, satisfying

(8) 1=a:1+x2+x3, 3:120, ngO, .’153;0.

The interpretation of this theorem is as follows. The three sets,
81, Sz, Sz, incorporate the alternative modes of production available
to each industry of a labor input equal to unity. The ecordinates ayy,
@a1, @a1 of & “point” a(yy eS; specify the positive output (a;;) of com-
modity “1” and the nonnegative inputs (—agy, —a31) of commodities
“2" and “3” arising from the choice of the process a¢;. The sign
restrictions in (1) are imposed to satisfy Assumptions (a) and (b). The
sets Sy, 85, S3 are made convex to satisfy Assumptions (¢} and (d),
bounded to satisfy Assumption (f), and closed because productive proc-

2 Since no transposition signs are needed in this chapter, the symbols “ and * are
used to denote different points. ‘
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esses cannot be measured with the absolute accuracy needed to give
meaning to the distinction between closed and not elosed sets, whereas
without the assumption of closedness the theorem would not be valid.
The existence of a solution of (2) expresses Assumption (e).
The convex hull 8 of S;, Sz, Ss is the set of all points (yy, ys, ys) such

that

Y1 = anz + @323 + ay3xs,
(9) Y2 = Gg1%1 + Q0T T G273,

Y3 = az:1xy 1 a3tz + asars,
for some choice of processes, one for each industry,4
(10) aqyeS1,  ap eSSz ag) eSs,

and some set of levels of operation 2y, 25, 23 satisfying (8) 8o as to absorb
all available labor. Since we assume no net inflow of any commodity
except labor, the atlainable ® point set is the intersection S of 8 and P.
The theorem concentrates on the set T of efficient ® points y of S, i.e.,
those points that eannot be improved upon, in the sense of (5), by any
other attainable point y*. The theorem says that this set T is a
plane triangle, and that all its points can be obtained as combinations
of the same three processes, a1y, a3, a3, one for each industry.

We proceed to the proof of the theorem. The point ¢’ defined by (2)
i3 a point of 8. Now consider the point y”” = A"y, where N is the
algebraically largest value of ) for which

(11) M o= (0, M Ma)

is contained in 8. (A"’ is finite because 8, as the convex hull of bounded
sets, is itself bounded.) Then y” is on the boundary of 8 and can be
made to satisfy

I4 " L I *H
Y1 = an® + s + G375 > 0,

11 n rr n " Irs "
(12) Y2 = an®y + Gpte + agzry > 0,
i L7 0 n 1 ”
Yz = anT; + 037 + oz > 0,
where
H 11 r
{13) aqy €8y, ag) €8Sz, agy €83,

for some z'' satisfying (8} if =’ is substituted for z.

4 There is no need to select more than one process from each S; bocause the §; are
themselves assumed to be convex, and therefore the output of any linear combination
of processes taken from some S; is the cutput of one single process contained in that S;,

5 See Chapter I11, Definition 5.1. If we allowed some labor to go unused, it would
be necessary to replace S by the convex hull §; of 5§ and the origin 0.  Since this would
not add any efficient points, we need not consider this possibility.

¢ See Chapter I1I, Definition 5.2.
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Consider the triangle T spanned by a(,, a(, a@, ie., the set of all
points {6) for which z satisfies (8). These points belong to S. The
following table indicates that what can be said about the sign configura-
tions of the coordinates of various points or point sets in 7. Here +
stands for > 0, — for £ 0. Since 3’ has positive coordinates and is

. Internal
Vertices Edges Point
ally an | @ | e aw) | {gon el | (a7, aml y”
+ - - + - +
- + - + + - +
- - + - + +

contained in the triangle T, the plane L of T does not coincide with a
coordinate plane. It follows from the table that the interscctions of
this triangle with the coordinate side planes must run as indieated by
Figure 1 (see dotted lines, with — meaning < 0): Within L the inter-
section of L with

y1 = 0 separates 3’ from {aé), af_-;)},
(14) yg = 0 separates ¥’ from {af;;,, a{i)},
y2 = 0 separates ¢’ from {ay,, a3},

separation meaning strictly that 3" is not on the line ; = 0 and that no
point of {az, ag@ ) is on the same side of ¥, = 0 as ¥ is, ete.
Denote by

(15) y;;) = (y]’l’h 0) O)r yé) = (0; y;;: 0): yzi;} = (0; 03 y;!:i)

the three points at which the lines of separation intersect. Now suppose
(see Figure 2) that 8 contains any point 3"’ of P (hence also of §)
separated from the origin by L. Then, since S is convex, the entire
tetrahedron constructed on the vertices y(5;, ¥y, ¥, ¥’ belongs to S,
has " on its boundary facing the origin, and hence contains a point
(3) with X > A", in contradiction to the definition of X, It follows
that the triangle T' = {y(1), ¥2), Y5} is a part of the boundary of S.
We also read from Figure 1 that in {15)

(16) yi >0,  ym >0, gy >0
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e
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Fiagure 1

Figure 2 suggests that all points y of T are efficient points. An
algebraic argument runs as follows. Let

(17) P + Dotz + Pays = vy + P2z + Pa¥s = Po,

say, be the equation of the plane I of T (and of T, where py, ps, p3 do
not all vanish. Since each of the vertices (15) of T must satisfy this
equation if substituted for y, we have

(18) Pi¥is = Palfz» = Palas = Po.

It follows from (16) that we can choose the sign of p; such that
(19) po>0, P >0, p2>0, p3>0.
Then S eontains no point y* satisfying

(20 P + pavs + payk > po

because such a point would be separated from the origin by L.

Now let # be a point of T and therefore of P. Any point y* in §
satisfying (5) would also have to be in P and therefore in 8. But (5)
would imply, in view of (19),

(21) Pivi + payz + pays > pur + paya + Pays = po
funless all three equality signs hold in (5), in which case y* is not differ-
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¥y

Y

Figore 2

ent from ], and we have already seen that 8 contains no such poeint y*.
Hence all points y of T satisfy the requirements of the theorem.

Conversely let 4’ be in 8 but not in 7', and therefore on the game side of
L as the origin, The construction (11) already indicated will then lead
to a point 3 in S such that (5) is satisfied if 3" and ¥’ are substituted for
y* and y, respectively. Hence only points y of T satisfy the require-
ments of the theorem. This completes the proof of the theorem.

It can be shown that the theorem proved ceases to be true when either
(i) more than one scarce primary input is required, or (ii) one of the
three industries has joint production (e.g., @y > 0, az; > 0). Any
proof shonld therefore make use of the restrictions (1) on the signs of
the coefficients a,p.

Tt might be thought that, whenever each of the sets Sy, Ss, S; is the
convex hull of a smaller set of points representing more “elementary’’
technological processes, the three points agy), az), @ from which the
efficient set T is combined might have to be combinations of elementary
processes. 'This, however, need not be the case. To be precise, let an
extreme point of a convex set S; be defined as a point which cannot
be represented as a linear combination of other points of Sy with positive
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weights whose sum is unity. Then it will be possible to choose as basis
points agy), 4, 6 of T three extreme points of Sy, S,, Ss, respectively.
A proof of this statement can be based on the first paragraph of Chapter
3, Section 10, of Bonnegen and Fenchel [1934].

It is further easily seen that, while three processes suffice as a basis
from which to combine all efficient points, the sets Sy, S;, S3 may be
such that one or more of these processes can be chosen in more than
one way.



CaaPTER IX

ALTERNATIVE PROOF OF THE SUBSTITUTION THEOREM
FOR LEONTIEF MODELS IN THE GENERAL CASE

By KeNNETH J. ARROW

It is of some interest to state and prove, in a manner which does not
involve the use of the calculus, the theorem concerning substitutability
in Leontief models stated elsewhere in this volume by Professor Bamuel-
son [VII]. The chief virtue of such restatement is not the generalization
to nondifferentiable production functions but the greater clarity given
to the importance of the special conditions of the problem. This ap-
proach has been developed by Professor Koopmans [VIII] for the case
of three outputs; the present chapter seeks to generalize his results.

1. THE ASSUMPTIONS OF THE SAMUELSON-LEONTIEF MODEL

Samuelson’s assumptions will be restated here in the terminology of
linear programming (see, e.g., Chapter III). We shall let n + 1 be
the total number of commodities involved; the first » will be termed
“products” and the (» + 1)th “labor.”

AssumpTioN 1: There is a collection of basic activities, each represenied
by a vector with n + 1 components, such that every possible state of produc-
tion is represented by a linear combination of a finite number of the basic
activities with nonnegative coefficients.! The collection of basic activities
from which such combinations are formed need not itself be finite,

AssumetioN 11: No basic activity hos more than one output.
AssumeTtioN IIL: In every basic activity labor is a nonzero input.

AssumprioN 1V: There is a given supply of labor from outside the sys-
tem, but none of any product.

1The restriction to linear combinations of a finile number of basic activities is
unnecessary. The generalization of a set of nonnegative weights is a measure over
the space of basic activities. (For the definition of a measure, see Saks [1937, pp.
7-171) If b stands for a variable basic activity and p is a measure over the space of
basic activities, then any state of production is of the formfb du.  All subsequent

results apply equally well to this more general case, with completely analogous proofs.
155
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Assumption T is that of constant returns to scale; I states the absence
of joint production in the basic activities; IIT states that labor appears
solely as a primary input; and IV states that no produet is a primary
input.

In the vector representation of activities, let the (n - 1)th component
be labor. As usual, inputs will be represented by negative numbers,
outputs by positive ones. By an activity of the ith industry we shall
understand an activity in which no component other than the ith is
positive. Clearly, any linear combination of the basic activities of the
th industry with nonnegative coefficients is itself an activity of the sth
industry. Further, let ¥ be any activity. Then, by Assumption I,

(1) ¥ = zk:xkbkr

where 2; = 0 and b* is a vector representing a basic activity.? Number
the activities b* in such a way that those with & = 1, --+, n, are basic
activities of the first industry, and, in general, those with &k = n;_; + 1,

+ , ny are basic activities of the 7th industry, where ng = 0. Then,
from (1),

@ =3 3 abt

i=1 k=n{+1
As noted,

i

> b

k=mni_14+1

is an activity of the ¢th industry. Hence, every activity is expressible
as a sum of n activities, one from each industry.

Further, let a normalized activity be one in which the labor input is 1.
From Assumption I it follows that every activity of the sth industry is
the nonnegative multiple of a normalized activity of that industry, and
conversely. Hence every activity is a linear combination of # normal-
ized activities, one from each industry, with nonnegative coefficients.
The amount of labor used in any activity is therefore the sum of these
coefficients. If, finally, we choose the units of labor so that the total
supply of labor available, as guaranteed by Assumption IV, is 1, we
may say that any aetivity y is expressible in the form

3) ¥y = 2
i=1

2In this chapter all vectors are column vectors. For future reference, note that

the prime symbol wiil not denote transposition but will serve to distinguish different
eolumn vectors.
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where
(4) z; 2 0, E ;=1
i=1

and o’ is a normalized activity of the jth industry. As now defined,
all vectors y, @’ have —1 as their (n + 1)th component; let us redefine
them to have only their first n components.

Note that the set of all normalized activities of the jth industry is a
convex set; call it §;. From Assumption II,

(5) if aeS; then a;, =0 forall k=g

{Here the symbol ¢ means “belongs t0”; a; denotes the kth component
of .} Finally, it follows from Assumption IV that

(6) y = 0.

(The names and symbols for various partial ordering relations among
vectors will be those introduced by Koopmans [III, Section 2.5].)

The set S of feasible points in the product space is that satisfying (3),
{4), and (6). The problem is to characterize the set of efficient points ?
of § if the agsumption contained in (5) is made.

The set of all points satisfying (3) and (4) will be referred to as the
convex hull of the undon of 83, -+ | 8,. 8 is then the infersection of the
nonnegative orthant (of Fuclidean n-space) with the convex hull of the
union of 8y, «++- , 8.

The following notation and terminology will be used:; A will denote
a square matrix of order =, o will be the element in the 7th row and jth
column of A, and o’ will be the vector which is the jth column of A.
A will be said to be admissible if o ¢ 8; for every 7. A weight vector, x,
has the properties = 0, > 7.1z; = 1. A pair (4, z) is said to be a
representation if A is admissible, z is a weight vector, and Ax 2 0. A
vector i for which there exists a representation {4, x) such that y = Az
is termed feasible; this definition agrees with that given in the firsi
gentence of the preceding paragraph.

In the light of (3)-(6), the economic significance of these definitions
is obvious. In particular, the set of feasible points, or vectors, is pre-
cisely S; a representation is a mode of industrial organization which will
achieve a given feasible point. Note that, in view of (5), a} = 0 for all
i # 7.

Two forms of Samuelson’s theorem will be established, corresponding
to Koopmans’ “strong” and “weak” assumptions, respectively [III,

3 For the relevant definition of an efficient point see Chapter 11, Seetion 5.2, con-
sidering labor as the only primary commodity.
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Section 3.6]. In the first case we assume that it is possible to produece a
positive net output of all products; in the second we assume only that
some net production is possible.

2. TaE SussTITUTION THEOREM UNDER STRONG ASSUMPTIONS

TraeorEM 1: For each j = 1, - -+ , n, let S; be @ convex set in Euclidean
n-space such that, if a € Sj, thena; S 0fori = j. Let 8 be the intersection
of the convex hull of the union of Sy, --- , Sy, with the nonnegative orthant.
If 8 is a compact set * with af least one positive element, then the set of efficient
points of S is the indersection with the nonnegative orthant of an (n — 1)~
dimensional hyperplane the direction coefficients of whose outward normal
are all positive.

Lemma 1: If i belongs to the compact set S, there is an efficient point y"
of 8 such that ¢y’ = y' %

Proor: Let U be the set of points y such that y ¢S, y 2y’ Uis a
compact set, so that the continuous funetion 3 7. ,y; attains a maximum
in U, say at y”’. Since y”e U, ' 2 ¥'. 1If ¥’ were not efficient, there
Would be a point 7 of 8 such that § > 3/; but then 7¢ U, 37 ,7; >
3..19; , contrary to the construction of .8

Lemma 2: If A is a (square) matriz such that af £ 0 for i 5 j, and =
and y are vectors such that Az =y, 22 0,y = 0, y; > 0, then z; > 0.

Proor: By hypothems a’:c, <0 for 4 j, so that X, air; < 0.

Hence 0 < y; = aiz; + X a7y < alz;. Since z; = 0, we must have
z; > 0.

LemMma 3: Let A be a matriz such that af S 0 for ¢ # j and for which

there exists a veclor x such that Az > 0. Then (a) Az’ = 0 implies
2 2 0; (b) Az’ > 0 implies ' > 0.7

Proor: By Lemma 2, the hypothesis Az > 0 implies z > 0. The
ratios z;/z; are therefore defined; let

] m = min (z; /2;),
7
where j varies from 1 to n, and choose 7 so that

(8) zi/1; = m.

1 That is, closed and bounded.

8 This lerama has been proved by von Neumann and Morgenstern [1947, p. 593)
for the case where S has a finite number of elements.

¢ See Chapter III, Section 2.5, for definitions of “>" and “x.”

7 Recall that in this chapter the prime is not used as a transposition sign.
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From (7) and the hypotheses,
©) alr; = alxiai/z)) £ alzm (7 = 9.
Suppose Az’ = 0. Then, from (8) and (9),
n n
05 > alyy <dam+ Y dem=m > dlx;.
i=1 i i=1
By hypothesis, .- @iz > 0, so that m = 0. From (7), zj = 0, since
x; > 0 for all j, establishing (a).
If Az’ > 0, then, clearly, ' = 0 by (a), ' # 0, so that 2’ > 0.
LemMa 4: If A is a mairiz such that Az =2 Conly if 2 = 0, then A s
nonsingular.

Proor: If z is such that Az = 0, then A{—z) = 0. By hypothesis,
220, —x =0, 50 that = 0. Hence Az = 0 implies z = 0, so that
A must be nonsingular.

Lumma 5: If (A, z) is a representation of y > 0, let @ be the set of points
y' = O for which there exists a vector z' such that Az’ =y, T7- 1z = L.
Then every point of Q is feasible.

Proor: By hypothesis,
(10) al =0 for i,
(11) Az =y > 0.

From (10), (11), and Lemma 3, Az’ = 0 implies " = 0.  Since E;-;lz;
= 1, =’ is a weight vector. Therefore (4, z') is a representation, and
y' is a feasible point.

Lemma 6: If Q is defined as in Lemma 5, there do not exist two points
¥,y inQ suchthat y' > y''.

Proor: Suppose the contrary. Let y’ = Az', ¥’ = Az", where

"
j

-

n
(12) Sr=1=
i=1

J=1

Az’ - z'') > 0. By the proof of Lemma 5, A satisfies the hypotheses
of Lemma, 3, so that ' — z’" > 0; but then, Z;L,(x; — z;) > 0, con-
trary to (12).

Lemma 7: If, foreach k = 1, -, p, y® has representation (4%,
2™ and 8 > 0, and if Thoate = 1, then y = h_1txy™ is feasible
and has o representation (A, z), where z = 33 4x®, and o =
(CRartiri®a®?) /z;, for all j for which z; > 0.
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Proor: Define z and &’ as in the hypothesis; for all § such that z; = 0,
choose o’ to be any element of S;. Since the sets S; are convex, it fol-
lows that o’ ¢ S; for each j, so that A is admissible. It is also easy to see
that z is a weight vector, that y = Az, and that y = 0, so that (4, z)
is a representation of y.

Lemma 8: Let y > 0 be an efficient point with representation (A, x), and
let T' be defined in terms of y in the same way that Q is defined in Lemma 5.
Then, (a) A s nonsingular; (b) every efficient point of S belongs to T.

Proor: By the proof of Lemma 5, A satisfies the hypotheses of Lemma,
3 and henee is nonsingular by Lemmas 3 and 4.

Let y’ be any efficient point. Since there is a positive efficient point,
we cannot have " == 0. Since 4 is nonsingular, there is a veetor z’ such
that Az’ =y’ > 0. By Lemma 3, z’ > 0, and therefore 3.7_;z; > 0.
Let to = 1/2°7- 13:,-'. Then, A(tga’) = toy’ > 0, Tjastor; = 1, s0 that

(13) toy, eT.

By (13) and Lemma 5, {5y is feasible. If 4, > 1, then tyy’ > 4/, which
is impossible for an efficient point . Hence

(14) 0<p <L

The variable point oy + (1 — )y > 0 for t = 0. Hence we can
choose §; so that

(15) H <0,
(16) v =ty + (1 — )y >0

Let 2" = fit92” + (1 — #))z; then, by the definition of ¢; and the fact
that = is a weight vector, Z}'.lx,f' = 1; also, " = Az”. From (16)
and the definition of T, ' ¢ T. By Lemma 5,

(17 "’ is a feasible point.

Letfy = (tito)/(h¥o — 1), 83 = (1 — 41) /(1 — t1ts). From (14) and (15),
(18) 0<t; <1,

(19) ts = 1.

From (16},

(20 tay = by’ + (1 — t2)y".

From (18), {20), (17), and Lemma 7, 3y is a feasible point. If {3 > 1,
then 3y > y, so that ¥ would not be efficient, contrary to hypothesis.
Hence, from (19), 3 = 1, which implies that i, = 1. From (13), then,
v eT.
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Proor or THEOREM 1: By hypothesis, there is at least one positive
feasible point. By Lemma 1, there is an efficient point y > 0. Let T
be defined as in Lemma 8. Then every efficient point of 8 belongs to T'.
Conversely, let ¢ be any point of T. If i is not efficient, there is, by
Lemma 1, an efficient point ¢ > ¢'. Since 3 is efficient, it belongs to
T by Lemma 8; but this contradicts Lemma 6. Hence 3’ is efficient, so
that 7T is precisely the set of efficient points.

T is the intersection with the nonnegative orthant of the hyperplane
defined parametrically by the equations Az’ =y, X7z, = 1. By
Lemma 8, 4 is nonsingular, so that ' = A™'y. Let A% be the element
in the jth row and éth column of A™!, and 4° be the ith column. Then
the equation of the hyperplane is

T )

> (T a)w=1

i=1 \j=1

Hence the numbers 3°F_ A} are the direction numbers of the outward
normal to T. For each ¢, AA* is a vector all of whose components are
zero except for the ith, which is 1. Therefore AA* 2 0; by Lemma 3,
A* > 0, so that 37,4} > 0 for all 5.

3. Tre SussTITyTION THEOREM UNDER WEAK ASSUMPTIONS

A generalization of Theorem 1 in which it is assumed only that there
is a feasible point ¥ > 0 (instead of ¥ > 0) will be developed in this
section. Some new terminology and notation will be needed.

A representation (4, z) will be said to be trivial if there is a nonnull
set of integers, I, such that z; > 0 for some 7in I, and 3, alz; = 0 for
all 7in I. The mode of industrial organization displayed by a trivial
representation has the property that there is a collection of industries
in which there is some net input of labor and possibly of other com-
modities and such that the output of any one industry in the group is
completely absorbed by the other industries in the group. This group,
then, is only a drain on the net resources of the nation. The main result
of thig section is that any industry which can be used in any system of
industrial organization not of the degenerate type just described can
yield a positive net output; therefore Samuelson’s theorem applies.

TeMMA 9: Let A be a matriz such that o < 0 when © # j; « and y vec-
tors such thatz = 0,y = 0,y = Ax; I a set of infegers (between 1 and n);
and i an element of I. Then, (a) ;. palz; = 4. = 0; (b) if 2, salz;
=0, then y; = 0, and o = O for all j ¢ —I such that z; > 0. (By —1I is
meant, the set of integers between 1 and n not in 1.)
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Proor: From the hypothesis,

(21) air; £ 0 for i##j,

80 that

(22) 3. alx; £0.
je—I

From (22) and the hypotheses,
0=yi= Dalej+ 2 a2 3, alay,
jel je—~I jel

establishing (a). If 3 ;. ;q{xj = 0, then clearly y; = 0, and X;,_ 16
= (), so that, from (21), aiz; = O for j ¢ —1I, from which (b) follows.
Lemma, 9 is a generalization of Lemma 2,

Lesmma 10: If ¥ > O has a trivial representation (A,"x), then y is not
efficient.
Proor: By hypothesis, there is a set of integers, I, such that

(23) 2; >0 forsome fel,
(24) > alz; =0 forall 7el.
jel

From (24) and Lemma 9b, y; = 0 for all 7 in I ; since y; > 0 for some %,
we must have kin —I. By Lemma 2, then, z; > 0 for some & not in /.
Together with (1}, this shows that 0 < > ;,.;2; < 1. Lett=1/1 —
3 e1%;), and define z; = O for jeI, zj = tx; for je —I. Then

(25) t>1,
(26) z’ is a weight vector.

Let 4 = Ax’. For i in I, it {follows from (24) and Lemma 9b that
alz; = O forjin —7. Hence

(27 yi = 2 e+ 2 o =0 =ty

jel je—I

0sy:= 2, dx;+ 2 aa;= Y dla,

jel Fe—I je—1

foriinI. Forie—I,alx; < 0forjinI. Therefore

so that
i- T+ X ai=t 3 dnzu,

jeI je—I jeml
for 4 in — 1, or, with (27),

(28) vz iy
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4 is an admissible matrix by hypothesis; 2’ is a weight vector, by (26);
and from (28), (25), and the hypothesis, 4’ = 0, so that y’ is a feasible
peint. Furthermore, from (28), (25), and the hypothesis that y > 0, it
follows that ' > y, so that y is not efficient.

The proof of Lemma 10 amounts to saying that the industrial organiza-
tion represented by a trivial representation can always be improved by
shutting down the group of industries which yields no net aggregate
output and distributing the released labor to the other industries in
proportion to the numbers already employed.

We shall also need the following generalization of Lemma 3:

Lemma 11: Let A be o matriz such that i £ 0 for ¢ = j and for which
there exists a vector x > 0 such that (A, z) is o nontrivial representation.
Then (a) Az = 0 implies ' = 0; and (b) Az’ > 0 implies 2" > 0.

Proor: Since x > 0, the ratios x;/x; are defined. Let

(29) m = min (x/z7),

and let I be the set of integers such that #;/z; = m;  is nonnull. From
the hypothesis, ajz; < Ofor<in I, jin —I, if a] 52 0. We then have
(30) z/x; =m for jel,

(31) alr; = alzi(z;/2;) < malz;,

ifiisinI,7in —I,and ! £ 0. Suppose that foralliin I, 3°;, alz; = 0;

since z; > 0 for all j, it would follow that (A4, z) is trivial, contrary to
hypothesis. Hence, by Lemma 9a, there is some 7 in I such that

(32) Z alx; > 0.
jel
From (31),
(33) > dxy <m ), alz,
eI je—T

if o’ = 0for some jin —I. Suppose Az’ = 0. Then, using (30),
34) 0 > da; + 2, alzp=m 2 diz; + 2 alx].
jel Je—I jel je=I

If af = Ofor all j in —1, then, from (32) and (34), it follows that m = 0.
If ai # 0 for some j in — I, then, from (33) and (34),

n
i
0<m z a:x;.
7=1
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Since E};la{::c,- = 0 by the hypothesis that (4, z) is a representation,
we must have m > (. Hence, in either case, it follows from (29) that
2’ = 0. Part (b) follows from {a) as in Lemma 3.

An integer, ¢, between 1 and » will be said to denote a useful industry
if there i some nontrivial representation {4, ) in which z; > 0. Lemma
10 guarantees us that, in the search for efficient points, industries which
are not useful can be regarded as nonexistent, so there is no loss of
generality in assuming that all numbers denote useful industries.

It is possible that the set of feasible points is empty, in which case
Samuelson’s theorem naturally has no particular content. Hence we
shall assume that there is at least one useful industry.

TaeoreM 2: Foreach § = 1, - - - , n, let 8; be a convez sef in Euclidean
n-space such that if a € S;, then a; < 0 for i ¥ j.  Lel S be the intersection
of the norinegative orthant with the convex hull of the union of 8y, -+ , S,.
If 8 is a compact sel, and if every number from 1 to n denoles a useful
tndustry, then the set of efficient poinis of S is the inlersection with the non-
negative orthant of a hyperplane the direction coefficients of whose outward
normal are all positive,

Proor: For each k, let y® be a feasible point with a nontrivial
representation (4% x®) such that x}¥ > 0 for each k; the existence
of these points follows from the hypothesis that every number from
1 to n denotes a useful industry. Lety = (X7 ,5#*)/n; by Lemma 7,
v is a feasible point with representation (4, z), where 2 = (3}_,2®)/n,
so that z> 0, and & = (Ti_1z?a®)/nz;. Suppose (4, z) is
trivial; then, for some set of integers I, >°;, alx; = 0 for all { in I.
From this, it follows that

£ (5 ) -0
k=1 N\fel

forall ¢in I. From Lemma 9a, then, 3; . sa{®z® = 0 for cach k and
all 7in I; in particular, the equation holds for any kin I. Since z{® > 0,
and therefore z{® > 0 for at least one 7 in I, we would have (4®, z®),
a trivial representation, contrary to hypothesis. Hence (4, z) is &
nontrivial representation with = > 0. All the conditions of Lerama 11
are satisfied, so that, by Lemmas 11 and 4, 4 is nonsingular.

Let ' be any positive vector. Then there is a vector z’ such that
Az’ =3y > 0. By Lemma 11, &/ > 0;let t = 1/(37.12;) > 0. Then
tr’ is a weight vector, and ty' = A(tzx') is a positive feasible point with
representation (4, tz’). All the hypotheses of Theorem 1 are then fuyl-
filled, and the conclusion follows.



CuarTer X

SOME PROPERTIES OF A GENERALIZED
LEONTIEF MODEL!

By Nicronas GeorcEscu-RoeGeN

1. The model presented by Leontief [1936, 1937, 1941] is based on,
among other things, the assumption that each commodity can be pro-
duced by one method of production only. 'This is equivalent to assum-
ing that all factors of production are limitational. Because of this, the
model will be referred to as the Leontief limitational model.

Samuelson and the auther have independently considered the possi-
bility of a Leontief model from which the limitationality restriction
could be removed. Such a model will be referred to as a Leontief
generalized model.

This abstract presents the results obtained by the author regarding
some properties of the generalized as well as of the limitational model
and omits the proofs.?

2. In this abstract, a Leontief generalized model is defined by the
following assumptions:

AssumeTiON 1: There are n + 1 perfectly defined and homogeneous com-
moditics, Gy, G2, -+ , Gunt1.  The commodity G, 4, is labor.

1 The results contained in this chapter may be reproduced in whole or in part for
any purpose of the United States Government, under whose contract they have been
completed.

These results were presented for the first time on March 22, 1949, at a meeting
of the staff of Harvard Economic Research Project. The eriticism of Professor W.
W. Leontief and of other members of the Harvard Economic Research Project
showed to the author the path for an ameliorated formulation of the argument related
to the consolidation problem. It is hardly necessary to add that, for any faults
the chapter may contain, the author alone is responsible. The facilitics of the Insti-
tute of Research and Training ie Social Sciences at Vanderbilt, University extended
to the author in preparing the final version are gratefully acknowledged.

 The result presented by Samuelson [VIIl is identical with Corallary 10.3 below.
The proof of 10.3 does not require, however, the existence of derivatives. Alternative
proofs which do not require the existence of derivatives have been given by Koopmans
[VIII] and Arrow [EX]
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This assumption contains a relevant economic restriction. A heter-
ogeneous commodity other than labor may be replaced by a number of
homogeneous commodities so that the sbove assumption be fulfilled.
This is no longer possible for labor, since the model allows for only one
quality of labor.

AssumprioN I1: Bach commodity, Gy, k=1,2, «-- , n, n 4+ 1), can
be produced by at least one process with no joint products. Such proe-
esses will be referred to as elementary processes.

AssumpTioN II1: AHl processes with joint oulputs are derived processes
(i.e., they are obtained by integrating® two or more elementary processes
tnto which they can again be decomposed).

This assumption makes legitimate the concept of the industry produc-
ing the commodity Gy.

AssumpTiON 1V: Any elementary processes for Gy (k # n + 1) require
“labor,” Gyn41, as input. Labor is, therefore, 'an indispensable factor
of production or, in other words, no economic perpetuum mabile free
of labor exists.

AssumetioN Vi All processes producing Gr41 must have at least one in-
put different from zero.

AssumPTION VI: The elementary processes are linear in terms of inpud
and output flows. They are, in other words, particular cases of Koop-
mans’ concept of an activity (IT1].

AssumpTioN VII: There is an indusiry producing only Gy, for any k.
AssumpTioN VIIL: Each industry is in competitive long-run equilibrium.
In a Leontief limitational model, Assumption II is replaced by
AssumprioN Ila: According lo the technological information, each com-
, modity Gy can be produced by only one elementory process.
3. We shall use the notation
€)) P®(—a®, —aff, .-, —al), by, —afy, -+, —a))

for an elementary process of the industry &;. The a’s are input flows,
and the b’s are output flows. According to Assumption IV,

@ >0 ai>0 aPz0 G € n);
fork £ n, and

3) boy1 >0, atleast one ai**V >0

fork=n+1.

# For the definition of integration of processes, see Chapter IV, Lemama 1.
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Yor such a model a technological horizon may be constructed from a
given technological information in the manner described elsewhere in
this volume [ITI, TV].

4. The model including the processes producing all G (k = 1,2, -- -,
n 4+ 1) is a closed model. If the processes producing G,y (labor) are
excluded from the model, this is an open model with respeet to labor.
Let H and H’ be, respectively, the technological horizons of the closed
and of the open model.

The process
(4) +%(0,0,---,1,0,---,0, =) (k=12 -, n)
will be called a completely integrated process of commodity Gyt If
(5) L = greatest lower bound of I

for all completely integrated processes =) belonging to H’, the process
(6) H(k)(ol 0; e !1! 01 JO? "'Lk)

will be referred to as the most efficient completely integrated process of
commodity Gy.

Evidently Lz = 0. The process II'® does not necessarily belong to
H' if H' ig an open cone.® :

5. The following general theorems are valid for an open model:

THEOREM 1: A necessary and sufficient condition that any bill of goods
be produced by labor alone (i.e., with labor as only net input) is that H’
should contain at least one completely integrated process for each commodity
Gy (k£ n+1).

TueoreM 2: If the conditions of Theorem 1 are fulfilled, and (x1, 2,
, Tny1) 18 the space of all commodities, then the linear space

(7) Lz) = 20 Lz 4 Zaga =0
1

is a supporting plane of H'.*

* The position of 1 is determined by the superscript k (ie.,a; = 0fori =k, » + 1).

5 The term open has here the meaning used in pomt set theory and should not be
confused with that of the expression “open model.

¢ The linear space L(x) = 0 will be said to be a supporting plane of H' if

{a) there are vectors of H' which form with L{z) = O as small an angle as we want;
(b} one of the open halfspaces L(z) > 0, L{z) < 0 contains no vector of H'.

If H' is & closed cone, the condition (a) is equivalent to; L{x) =0 should eontain at
least one element of H'.



168 N. GEORGESCU-ROEGEN {PaRT 1

6. The following theorems have been established for a limitational
open model:

TuroreM 3: If the square mairiz [a:z] satisfies the conditions

8 ay > 0, =0 (i == &),
and if

)] lae] = [Z aik] >0,

then the system

(10) | 3 i = A (=12 - ,n),
where? =

(11) {4l =0,

admits a solution [A] = 0.

CoroLLarY 3.1: If condition (11) of Theorem 3 is supplemented by
A; >0 fori £ a, @ follows that \; > 0 for i = o.

TureoreM 4: If the square matriz [az] is nonsingular, and if

(12) a; >0, ax=0 (¢ = k),
and

a3) ol = | Saa| 20,

then the system =

(14) z": iy = A; (i=1,2 ¢+ ,m,
where = '

(15) [A] = 0,

admils a solution [\] > 0.

Corovrrary 4.1: If, in Theorem 4, (15) is supplemented by A; > 0 for
1 = o, it follows that \; > 0, for i < 0.

TaeoreM 5: If one complete bill of goods, [B%] > 0, can be produced
by labor alone, any other bill of goods, whether complete or not, can also be
produced by labor alone,

" The signs > and 2 are used in the meanings defined in Chapter ITI, Section 2.5.
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This theorem can be stated also in the following form: The system

(16) A—EAW

k=1
admits @ solution [N 2 0 for any {B] > 0 if it admiis one [\°] > O for
one [B° > 0.

Let T be the orthogonal projection of H’ upon the linear space
Tny1 = 0. In this space, of coordinates x,, z,, ++- , z,, I is & convex
cone. Let also @ be the closed positive orthant of the space (21, xo,

) Tn)-

With these notations and under the assumptions of Theorem 5, we

have two eorollaries.

CoRrOLLARY 5.1:
(17) ofcr.

In particular, the technological horizon contains a most efficient completely
integrated process, 1), for each industry (G).

Cororrary 5.2: I 25 n-dimensional, or, in other words,

1 —a aj
{1) (n)
—ay 1 —ap
(18) A= #= 0.
e

THEOREM 6: If a complete bill of goods can be produced by labor alone,
then
(19) Nishids 0 plbdeiieuk s )

12 Lr 12 sde—1s T

where 0 £ s Sn~ 2, ki The A’s with sub- and superseripts are
the classical notations for the minors of A in (18).

TraEOREM 7: Necessary and sufficient conditions that the system (16) ad-
mtt @ solution [\°] > 0 for one [B] > 0 are given by the n — 1 inequalities *
(200 a>0, a;>0, ab3>o0 ..., AMEircisg,

8 Conditions that the system (16) admit a solution [3%] > 0 have been formulated
by Hawkins and Simon [1948]. Theorem 7 differs from the conditions given in that

paper by (a) the order of t.he determinants used (p. 248, Corollary), and (b) the
conditions imposed upon m ? (p. 245).
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7. The theorems of Section 6 can be easily extended to the generalized
open model.

TreoreM 5A: If one complete bill of goods, [B®] > 0, can be produced
by labor alone, any other bill of goods can also be produced by labor alone.

Under the assumption of Theorem 5A, we have two corollaries.
CoRroLLARY 5A.1:
(21) Qr .

In particular, H' contains of least one completely integrated process,
@, for each Gy,

CoroLLARY BA.2: IV s an n-dimensional cone (i.c., elemeniary proc-
esses, P, PP ... P™ can be found, belonging to H', such that the
corresponding A #= 0).

THEOREM TA: A necessary and sufficient condilion that one complete bill
of goods, [B] > 0, can be produced by labor alone is that a group of primary
processes, P, P® ... P™ belonging to H', can be found such that
(20) s fulfilled.

TrareorEM 5B (generalization of Theorem B5A): If one Will of goods,
(BY, B2, .-+, B2,0,0,--+,0),B) > 0fori = 1,2, - -, 0, can be produced
by labor alone, then any other bill of goods, (By, By, +-- , B, 0, --- , 0),
B;=0fori=1,2, -, 0, can also be produced by labor alone.

Under the assumptions of Theorem 5B we have three corollaries.

CoroLLARY 5B.1; H' contasns al least one complelely tniegraied process
=® for each commodity Gr.

If t € n is the maximum number of commodities contained in a hill
of goods which can be produced by labor alone, t will be called the rank
of the model.

CoroLtary 5B.2: H' contains af least one completely integrated process
Jor t commodities, G,), G,,, +++ , Go. H' contains a completely integrated
process only for these commodities.

By a change of notations the commeodities mentioned in Corollary
5B.2 may be written Gy, Gz, - -+ , G,. They will be called elementary
commodiiies.

CoroLLARY 5B.3: No bill of goods conlaining nonelementary commodi-
ties can be produced by labor alone.
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TurEoREM 8: The rank, {, of the model cannot be equal to n — 1 (d.e,
eithert =mort S n— 2).

TueoreM 9: If TV is not n-dimensional (i.e., if A = 0 for all groups of
elementary processes, PV, PP ... P®™Y the rank of the model t <
n — 2,

TuEOREM 10: The greatest lower bound, L, of the amount of labor neces-
sary to produce o bill of elementary goods, (By, By, - , B;, 0, --- , 0),
s given by

L
(22) L = ) Bils
k=]
CoroLrary 10.1: If t = n, and if H' is a closed cone, the minimum
amouni of labor necessary fo produce a Wil of goods, [B] > 0, is given by

(23) L = 3 B.Ly;

k=1
i.e., the process P(By, Bs, -+ , B,, — L), which belongs to H', belongs also
to the linear space (7).

CoroLLARY 10.2: If t = n, and H' is a closed cone, the process

(24) P(Blﬂ By, «-- ’ Bm —L) = Z A'615”‘) (D‘] 2 03,

k=1

where P® i an elementary process belonging to (7) and H',

CoOROLLARY 10.3: If t = n, and H' is a closed cone, the processes P™
used for producing with the minimum labor a bill of goods, [B], are inde-
pendent of the bill of goods (i.e., of consumers’ demand).

8. The results presented in the preceding sections are purely tech-
nological in nature. They are independent of Assumption VIII, which
is not required for the proofs. If we retain the assumptions that ¢t = »
and that H' is a closed cone, the classical conditions for long-run competi-
tive equilibrium for each industry G lead to

TrEOREM 11: Any long-run competitive equilibrium process used by the
industry Gy is ¢ P®’. From Corollary 10.3 and Theorem 11, we have
immediately

THROREM 12: Ift = n and H’ is closed, then in a generalized open model

the long-run competitive equilibrium brings about the optimum allocation of
resources (labor).
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Taeorem 13: If ¢t = n and H’ is closed, then

(25) P = Lk’Pn+1,
where py, 18 the long-run competilive equilibrium price of G,

If we adopt for each Gy as unit of measurement the quantity produeed
by one unit of labor in the process TI*, it follows that Ly = 1. If labor
is taken as numéraire, {25) becomes p; = 1, which means that the new
unit of Gy is the dollar’s worth. Relation (23) yields

n
(26) L=3 B.
feml
This relation shows that the natural unit of measurement to be adopted
whenever consolidation of industries is contemplated is the dollar's
worth of product. This offers a justification for the procedure adopted
by Leontief {1941, Chapter 3, pp. 14f.].

9. Some of the economic aspects of the above results deserve at this
point to be emphasized and accompanied by a few comments. Some-
thing will also be added regarding the equilibrium of the closed model.

{a) The model described by the assumptions of Section 2 does not
necessarily allow for the production of any bill of goods by labor alone
{Corollary 5B.3).

(b) If one bill of goods, (BY, B, --- , B2, 0,0, --- ,0), B> 0, can _
be produced by labor alone, any other bill of the same type, (By, B,
-+, B, 0, ---,0), can also be produced by labor alone (Theorem 5B).

{¢) The rank of the model (i.e., the maximum number of commodities
contained in a bill of goods which can be produced by labor alone) may
have any value from 0 to n with the exception of n — 1 (Theorem 8).

(d) If the rank of the model is ¢, there are { elementary commodities,
Gy, G, -+ -, Gy, for which there is achievable a completely integrated
process, i.e., a process producing Gy (k¢ < t) and requiring only labor as
input (Corollary 5B.2). It is open, therefore, to the economy to choose
to produce only the elementary commodities.

(e) The conditions that the rank of the model be n are those expressed
by Theorem 7A.

(f) There is a greatest lower bound to the amount of labor which can
produce a given bill of elementary goods (Theorem 10), If the rank
of the model is 2, and if the technological horizon is closed, this bound is
actually reached (Corollary 10.1).

If, however, H' is not closed, all L, may be zero. In such a case any
bill of goods would require only an infinitesimal amount of labor but
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could not be achieved without it. Labor would then have the role of a
catalyst in the roundabout process of production.

(g) If H' is closed, and if the rank of the model is n, the set of ele-
mentary processes used by each industry for the optimum allocation of
labor is independent of the bill of goods (i.e., independent of demand).
Only their scale of production will be influenced by demand (Corcllary
10.3).

(h) The long-run competitive equilibrium brings about the optimum
allocation of resources (Theorem 12).

() If H' is closed, and if the rank of the model is n, the long-run com-
petitive equilibrium prices are proportionate to the amount of labor input
in the most efficient completely integrated processes, i.e., proportionate
to Ly (Theorem 13). If H’ is not closed and all Ly = 0, all goods are
quasi-free with respect to the wage rate. Their relative prices will be,
however, indeterminate.

(i) The long-run static equilibrium of the closed model will be possible
only if H™+D, the technological information of the household—the
labor-producing industry—will contain a process,

1 1 1
(27) P(ﬂ+1)(“a§.ﬂ+ ): _a§n+ ) » "7 ”“G;n-l_ )7 bn+1)s
such that (a2, a3**?, «.+ , a+D| —b,.,) will be a process contained

in H'. Indeed, in this case, there would be equality between the demand
and the supply of goods and between the demand and supply of labor.

If ¢t = 0, there is no static equilibrium of the closed model. Iff=n
and H’ is closed, (27) must be contained in the linear space (7). If (7)
containg no process of H™' static equilibrium is impossible. As
enough labor is not forthcoming to produce the demanded bill of goods,
the economy will eontract down to nil.

If (7) cuts through H®*1D ie. if processes of H™1 exist on both
sides of (7), the supply of labor is greater than that required by the most
efficient way of producing some bills of goods. The economy may
expand to infinity, or, alternatively, unemployment may appear.
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Cuarrer XI

ON THE CHOICE OF A CROP ROTATION PLAN

By CrirrorD HILDRETH AND STANLEY REITER

This chapter is concerned with the application of a linear production
model to the problem of the selection of a crop rotation plan by an indi-
vidual farmer. The analysis presented here is static and is relevant to
the long-run decision as to which basic rotation and cultivation plan to
adopt as a fairly permanent practice. It does not bear on problems of
possible year-to-year deviations in plans due to weather or economic
conditions experienced in a particular season. For purposes of exposi-
tion a number of simplifying assumptions are made. After a simple
model has been developed, the effects of relaxing some of the assumptions
can be easily indicated.

The farmer is visualized as dealing exclusively in eompetitive markets.
This means that the prices he pays for inputs and receives for outputs are
market determined and are independent of his production decisions.

The crops used for illustrations in this chapter are several that are
common on Corn Belt farms. A rotation plan is a specification of a
sequence of crops to be grown in successive years on a selected parcel of
land. A rotation consisting of corn, oats, hay, abbreviated COH, for
example, would mean that the parcel was to be planted in corn the first
year, oats in the second, hay in the third, corn in the fourth, oats in
the fifth, and so forth. This would be called a three-year rotation. A
farmer who adopted this rotation would probably divide his cropland
into subparcels and start some of his land at each stage of the rotation.
This would spread his work more evenly through the year and provide
to some degree a hedge against failure of a particular erop in one year.
Thus, in considering long-run effects, we regard COH and OHC as the
same rotation, but CHO would have to be considered a different rotation
(i.e., hay after corn instead of after oats might have a different effect on
the soil and might result in different average yields of the three crops).

For simplicity it will be assumed throughout most of this chapter that
with each rotation is associated a particular cultivation plan (ie., a
particular sequence of soil treatments). The effect of recognizing that
a particular rotation can be carried out with various cultural practices

177
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will be briefly considered in Section 3. It will also be assumed initially
that the available land is homogeneous, and effects of relaxing this
assumption will also be considered in Section 3. Our example will be
developed in somewhat more detail than would be necessary just to
present the practical problem considered. This will be done in order to
illustrate some of the elementary properties of linear production models.
These have already been developed by Koopmans [III] and are included
here because the crop rotation application seems to be a convenient
expository device.

1. The significant eonsequences of using a particular rotation are the
crop yields the rotation will furnish and the input requirements (acres
of land, hours of labor, gallons of fuel, ete.) necessary o carry out the
rotation. A rotation may be identified with a veetor specifying these
quantities. For convenience we shall think of the quantities that repre-
sent a particular rotation as the average annual yields of erops and
average annual inputs used for each acre devoted to this rotation (ie.,
the rotation vector is normalized on land input).

Each rotation that is considered represents an activity in a linear
model. Each crop produced and each input used is treated as a commod-
ity. If we first consider only two rotations, say corn every year (CCC)
and hay every year (HHH), and assume that land is the only input re-
quired, then the model appears as in Table 1.2

Tasie 1
Activities
Commodities Rotation 1 | Rotation 2
CCC HHH

i xe
21 = corn output an 0
ya = hay output 0 ass
¥z = land input -1 —1

1 Ag in Chapter ITI, a negative coefficient in an activity vector indicates that the
associated commodity is used up in the activity. In this chapter the term “input”
is applied to a commodity that is typically used up in the kind of activities being con-
sidered, and refers to the negative number whose absolute value measures the extent
of this using up. This differs somewhat from Chapter IIT, where the term “input”
refers to that absolute value rather than to its negative.
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We assume first that the input of land is fixed, say y3 = —k and,
therefore, ; + 22 = k. Figure 1 then shows the alternative combina-~
tions of corn output and hay output that can be obtained by varying
the levels z; and zg of the activities.

If all the land available is devoted to rotation 1, we get the point
)1 (coordinates ka;y and 0); if all the land is devoted to rotation 2, we
get the point Qs (0, ka22).  All other points on the line @,(, are obtained
by apportioning the land between the o
two rotations in amounts ok and Q,
(1 — a)k, where 0 S ¢ = 1.

If the products cannct be destroyed
or thrown away, the line Q,Q; is the R.=aQ,+(1-0)Q,
set of all possible combinations of corn
and hay from a given land input. It @i
is also the set of efficient points for the
given land input since, for every point,
one coordinate can be increased only
by decreasing the other.

If products can be disposed of, the set of possible points is the triangle
€100 since all points on or inside this triangle can be reached, for
instance, by producing some combination on the line @;Q> and throwing
away appropriate quantities of product. However, the efficient point
set remains the line ;0Qs.

Let ys now permit land input to vary. Then the triangle of Figure 1
is replaced by the cone (0'Q1Q): in the three-dimensional commodity
space shown in Figure 2. Figure 1 may then be regarded as the inter-
section of this cone with the plane y; = —k. Alternatively, the cone
may be regarded as obtained by multiplication out of the origin of the
triangle in Figure 1 by a variable nonnegative factor,

If disposal of commodities is ruled out, the efficient point set and the
possible point set coincide and consist of the “front” facet of the cone
(i.e., the two halflines from O through @, and from 0 through @, and
the points of the plane angle spanned by these halflines).

If disposal of products is permitted, any combination of corn and hay
represented by a point of the cone is possible. However, all such points
cannot be efficient for, starting from an interior point, one can obtain
more hay (corn) with the same amount of Jand and without giving up
any corn (hay). Alternatively, for any interior point, it is possible to
produce that combination of corn and hay with less land. Only those
points lying on the “front” facet of the cone are efficient.

The equation of the plane through 0, @, > determines the rates of
substitution or transformation between commodities in efficient produc-

{yz3==Fk}
h i
Figure 1
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tion. 1In the notation of Table I, the equation of this plane is

1 1
(L Ys = — —1h — =Y
a1 a1z
Thus the marginal rate of substitution of hay for corn is asg/ay4, and
the marginal rates of transformation are a;; between corn and land and
a9s between hay and land.

¥

¥

_......_---ysa:-k

A

Figure 2

It is clear in this simple case that a farmer with a fixed amount of
land and these two production alternatives, seeking to maximize the
return to his land and entreprencurship, would choose between corn
and hay on the bagis of their relative prices. If the ratio of the price 2 of
corn (py) to the price of hay (p;) exceeds the equivalence ratio for hay
in terms of corn (p1/p2 > ass/a1), then corn will be chosen, and con-
versely for hay. The case where py/ps = @s2/a11 is one of indifference
in which corn, bay, and any combination of ok acres of eorn and (1 — )k
acres of hay (0 < a < 1) would be equally profitable.

The market price ratio p;/pe determines a family of parallel lines in
the (y1, y2)-space such that all points on a given line represent combina-
tions of 1 and gy, that have equal market value. Combinations of
equal market value are indicated by dotted lines in Figure 3. The
interior angle formed by the intersection of such a line with the positive
th-axis is 8y = arctan (p/pz). The line through the origin perpendic-

2 For a comparison of the notation for prices in this chapter with that of Chapter
II, see footnote 3 of the Introduction (p. 9).
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ular fo the constant-value lines, 0’V in Figure 3, has the property that
the market value of any point (y1, ¥;) can be measured by the projection
of the point on this line. Thus it may be called the value axis,? and it
intersects the positive y.-axis at an angle equal to 6;.

So long as v and y» have positive prices the value axis will lie in the
positive quadrant of the (1, yo)-plane. 0V, perpendicular to PyPy,
has the interesting property that all price combinations whose value

0.0 QZ
P - %
- i PR
-~ -~ -~
- -~
- P P
.~ -~ //
- -
- -
ol -~ //
- -
Pl
Ql f/’
Vl
v
N
Figusre 3

axes lie between 07V’ and the y,-axis make 3, the more profitable crop.
This is just another way of phrasing the statement above that corn is
more profitable if p1/p2 > @a2a/on.

9. The ideas developed so far carry over into somewhat more complex
cases quite readily. Consider the four rotations described in Table TI.

Tasre 11
Activities
Commodities . . . .
Rotation 1 | Rotation 2 | Rotation 3 | Rotation 4

CCC HHH CCH CHH

2] x2 T3 73
1 = corn outpub a1 0 a U4
ya = hay output 0 s [ 75 sy

ys = land input -1 -1 -1 -1

3 If py and ps are measured in dollars, any point (31, ¥2) that projects to the point
[ /ot + 2, pa/ (p% + p2)] on the value axis will have a market value of one dollar.
This may be regarded as the unit point on the value axis,
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Again, assume land input fixed at & acres (zy + 22 + 23 + x4 = £).
The results of raising corn only or hay only are again indicated by points
€, and € in Figure 4. The results of growing two. corn crops followed
by a hay crop are indicated by Q. (coordinates ka;s, kaes). Had Qg
been an interior point of the old set of possible points, say at ¢, this
would have indicated that land reacted unfavorably to alternation of
crops. Q3 would not add to the set of possible points and would not
be an efficient point since there are combinations of rotations 1 and 2
that produee more of both crops. @3 does add possible points and is
itself an efficient point. ¢4 repre-
sents the results of growing one corn
erop and two hay crops on each par-
cel of land in each three-year period.
The new set of possible points is the
interior and boundary of the polygon
formed by the axes and §,020,Q..
The broken line Q,QsQ.Q, is the
corresponding set of efficient points
and is comparable to & product sub-
stitution curve of the usual economie
theory. There are now three mar-

Ficure 4 ginal rates of substitution of hay for
corn, one corresponding to each seg-
ment of the efficient point set. Along the segment Q,Qy the rate is
as3/(a11 — @13), along Qs@Q, it is (@4 — @23)/(@13 — a14), and along
QuQs it is (@2 — 624)/a1s. As before, any pair of positive prices for
corn and hay give rise to a value axis passing through the origin. 07V 5
is the value axis corresponding to pairs of prices such that p;/p; =
@ga/{@11 — a13). At these prices rotations 1 and 3 and all combinations
of them are equally profitable.# For price combinations such that
71/Ps > Qgz/ (@11 — a13), rotation 1 would be most profitable and the
value axis would lie between 0'Vy3; and the y-axis. Similarly, if
azs/{@11 — @13) < P1/P2 < (@24 ~ 023)/(@13 — G14), the value axis lies
between 0'V,3 and 0'V3y4 and rotation 3 is the most profitable. Corre-
sponding statements can be made about price ratios in the other two
ranges. ‘Thus the three lines perpendicular to segments of the efficient
point set classify possible combinations of market prices into four groups,
each group containing those price combinations at which a particular
rotation plan is most profitable.

Via

4 Profitability in this context is measured by the total value of the two crops raised.
This would include both economiec profit and rent.
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Ag in Section 1, if we consider land a variable, the set of possible poinis
becomes a cone and the set of efficient points becomes part of its bound-
ary. This is shown in Figure 5. The efficient point set now has three
facets corresponding to the three efficient line segments of Figure 4.

The set of efficient points is conceptually the same as the transforma-
tion surface usually employed in the theory of the firm. Marginal rates
of substitution and transformation are usually visualized as varying con-
tinuously on the transformation surface, whereas, under the assumptions

¥

%

Frauge 5

employed here, the marginal rates change discontinuously at the edges
of facets of the efficient point set and are constant at all points in the
interior of a facet. Each of the three “front” facets of the cone in
Figure 5 determines a set of marginal rates of substitution and trans-
formation. For example, the equation of the plane through 0, @y, @3 is

1 1 [13%:)
2) : y3=———y1—(———-— )yz

a1 Qa3 11023

This determines the marginal rate of substitution of hay for corn as
as3/{@1; — @i3) and the marginal rate of transformation between hay
and land as (111(123/(0,11 and (].13).

3. It may now be useful to consider the following practical situation.
A farmer has the use of a certain parcel of land, say k acres, assumed to
be homogeneous, and wishes to choose among several rotations. Sup-
pose that data are available from technical experiments to show the
average yield of various erops to be expected under each of the alter-
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native rotations® Suppose further that the farmer can estimate the
various resources that would be required to carry out each rotation.
This information could be summarized in a form such as Table III,

TasLe 1[I
Activities
Commodities Rotation 1 | Rotation 2 | Rotation 3 | Rotation 4

cCcC HHH CCH CHH

T 2 r3 T4
¥, = corn output a1y 0 (3T 4
#2 = hay output 0 asy Qg3 24

yz = land input -1 -1 -1 -1
y1 = labor input s s 43 a4

Ys = equipment

input a5t Q52 ass G54
ys = fuel input as a6z as3 Ge4

which differs from Table IT in that it contains rows for inputs other than
land. The coefficients in the last four rows represent inputs used per
acre of land cultivated and are therefore negative.

The farmer's profit, =, can be written

6
™= E Pilfz,

i=1

(3)

where p, is the price of the 7th commodity.
jth rotation will be

(4)

His profit if he chooses the

6
=k E aiiDi
i=1

The difference between profit under the jth rotation and under the ith
rotation is

6
5) m—m =k 2, (a; ~ an)ps

i1
¥or given values of the a's, the equation
(6)

& Such data are available for some rotations on certain types of land; see e.g.,
Browning, ¢l al. [1948].

'Jrj—’JT],=0
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is a hyperplane in the 6-dimensional space of all possible commodity
prices and divides the space into two sectors, one including those price
combinations for which the jth rotation is more profitable (x; — m; > 0)
and the other including those prices for which the Ith rotation is more
profitable (r; — 1 < 0). Such a plane exists for each pair of rotations,
and together they would divide the price space into four subsets which
we shall refer to as sectors, each sector consisting of those price combina-
tions for which a given rotation is most profitabie. On the boundaries of
these sectors two or more rotations are equally profitable.

Since, in our example, all planes are parallel to the land-price axis,
no information would be lost by considering only a 5-dimensional price
space, omitting ps. The sectors corresponding to the alternative rota-
tions are convex since m; — m; > 0 for p, and =; — = > 0 for p* implies
7 —ap > 0forap 4+ (1 — a)p*, (0 £ « £ 1). With some approxima-
tions, the information in these sectors could be represented in a 2-dimen-
sional figure. Generally speaking, prices paid by farmers for factors of
production are more stable than prices of erops raised. An approximate
representation might be obtained by inserting average prices for a recent
period for py, Ps, pe and regarding these as constants, thus reducing equa-
tions like (6) to lines in the (py, p2)-space.

The equation =; — m; = 0 could then be written

(7) (@ — aw)ps + (ag; — az)pa + (¢; — 1) = 0,

where ¢; = 30 4 ayp; (=1, --- , 4) and is regarded as a constant.
The six equations like (7) determine boundaries of rotation sectors in
the (py, pz)-space as illustrated in Figure 6. The six lines of equal

‘pl
~ 3 \
3\ 4 ,
3 Va
2
1

4

i .
31 314 271 a3 B

Ficure 6

profits are shown with the numbers appearing along the coordinate axes
showing which two rotations are compared by a particular line. The
rotation numbers also show on which side of a line a particular rotation
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is more profitable. The four sectors bounded by the heavy lines inside
the axes are numbered to show which rotation is most profitable for
price combinations in each sector. The existence of four points at which
three lines of equal profits intersect may be regarded as typical. When-
ever we have a point such that =y — m; = 0 and =; — 7, = 0, then it is
also true that =1 — 7, = 0 at that point.®

The situation represented by Table I1I is a highly simplified example,
but the way in which a number of complexities could be incorporated is
clear. Additional rotations would add columns to the table, additional
crops or resources used would add rows. If the farmer wished to con-
sider alternative cultivation practices for some rotations, each combina-~
tion of a specific rotation and a specific cultivation practice would repre-
sent a distinct activity and would add a column to the table. However,
the procedure for translating the relevant technical information into
sets of prices for which particular activities are more profitable would
remain unchanged.

If the farmer had more than one type of land, there would be a set of
activities for each type of land. If the quantities of each type of land
were regarded as fixed, a separate table could be used for each type and
the problems of the best rotation and cultivation plan for each type of
land could be considered separately.

4. To shorten the discussion of a few points related to the previous
sections, let the model be expressed in mafrix form

(8) y = Az,

where y is the commodity vector whose elements are products produced
and resources used as in the previous example. A is a matrix of coeffi-
cients of the sort contained in Table III, and z is a vector of levels of
activities stating the extent to which each is used. ILet p be the price
vector whose elements are the prices of the commodities, ¥. Then profit,
=, is given by )

9 T = p'y.

It is plain that, if the entrepreneur is unrestricted in his selection of z,
if prices are independent of his decision, and if one of the activities yields
a positive profit, then the entrepreneur can make any desired profit by
choosing the appropriate value for z;, the element of x corresponding to
the activity which yields a positive profit. This situation, of course, is

& The four points could be identical, or it could happen that one or more of the

rotations are worse than others for all prices, in which case fewer lines and sectors
would appear in Figure 4.



CHAP. XI] CHOICE OF A CROP ROTATION PLAN 187

not realized in practice. Any entreprencur who expanded one or more
activities far enough would encounter some violation of these conditions
for indefinitely large profit. Ile would find himsell bidding up prices of
resources used, forcing down prices of products sold, exhausting available
resources at least in their more efficient forms, or exhausting his finaneial
resources. In any given case it is probable that several of these exist as
potential limits to the expansion of an activity or group of activities.
However, some of the restrictions may be ineffective in that the most
profitable selection of activity levelsis the same in a model which includes
them and in a model which excludes them.

In Section 3 it was assumed that the only effective restriction was that
the amount of land available to the farmer was fixed. In models where
a limitation on one resource is the only effective restriction, the problem
of selecting the optimal collection of activities reduces to the problem of
selecting one activity that yields highest returns per unit of the fixed
resource. Thus the discussion has been limited to a highly special situa-
tion, though it is a situation of some practical interest.

In classical competitive equilibrium theory, profit is eliminated by the
bidding of entrepreneurs for land. This ean be expressed in a linear
model by letting the vector ¥ and the matrix A include only commodities
other than land. = = p’y then represents the sum of profits and rent.
If other resources are plentiful and land is scarce, profits will be pushed
to zero and the whole quantity = will be rent. Furthermore, competi-
tion will foree each entrepreneur to use the best activity to avoid losses.
The problem of seleetion of a best activity under these conditions has
been analyzed in Section 8. Let a; be the column of A corresponding
to a best activity (i.e., m; = kp'af = = for all I). The rent per acre
is then equal to p'a;. Similarly, if several types of land exist in an
economy, we could write

(10) y=[4 BC. I,

where [A B C ---]is a matrix of activities arranged so that activities
using land of, say, type A appear at the left, activities using land of
type B appear next, ete. Rents for the respective types of land would
then be p’a;, Dby, ', ete., where b and cl, are columns corresponding
to best activities on land of types B and C, respectively. The difference
in rent between, say, type A and type B would be equal to p’(a; — b]).
This is the difference in net value productivity and corresponds to the
classical notion of differences in rents being determined by differences in
productivity.

Another interesting question can be explored by considering the hyper-
planes in the price space of the form p'af = 0. Each of these represents
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a set of price combinations at which the 7th activity would yield zero
rent on land of type A. It divides the price space into two sectors, one
containing prices at which the activity will yield a positive rent, the
other contaiming priees at which the activity will yield negative rent.
If this is done for all activities, the set of prices at which no activity
yields a positive rent will either be empty or be a convex set. If it is
a nonempty convex set, it boundaries could be considered the price
marging of cultivation.



CaartER XII

- DEVELOPMENT OF DYNAMIC MODELS FOR
PROGRAM PLANNING

By MagrsgaLL K. Woop anDp MurraY A. GEISLER

The development of dynamic models for program planning will be
discussed in the context of military planning problems, as that is the
area in which our experience liecs. We believe that the techniques dis-
cussed in this chapter are applicable to other types of program planning
problems, particularly in planning for organizations or economic systems
where relationships are largely technological and decision making is
highly centralized, as contrasted with those in which decision making is
mainly decentralized and relationships depend primarily on individual
human reactions. The material presented here is the work of the entire
staff of the Planning Research Division, Comptroller, U. 8. Air Force.

1. GENERAL PrROBLEMS OF ProGgrRAM PLANNING

It was once possible for a Supreme Commander to plan operations
personally. As the planning problem expanded in space, time, and
general complexity, however, the inherent limitations in the capacity
of any one man were encountered. Military histories are filled with
instances of commanders who failed because they bogged down in details,
not because they could not eventually have mastered the details, but
because they could not master all the relevant details in the time avail-
able for decision.

Gradually, as planning problems beecame more complex, the Supreme
Commander came to be surrounded with a General Staff of specialists,
which supplemented the Chief in making decisions. The existence
of a General Staff permitted the subdivision of the planning process
and the assignment of experts to handle each part. The function of the
Chief then became one of selecting objectives, coordinating, planning,
and resolving conflicts between staff sections.

In judging the acceptability of a planning procedure it is necessary to
establish criteria. To be acceptable a plan must embody desired and
attainable objectives. It must be consistent in the sense that all parts

189
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of the plan must be mutually selfsupporting. Furthermore, it must
be timely, both with respect to the objectives and assumptions incor-
porated in it and with respect to the starting date from which its projec-
tions are made.

We can picture the staff response to this problem of consistent pro-
gramming in four stages. In the first stage each agency prepares its
own program more or less autonomously for the guidance of its own
operations. Staff action is coordinated mainly at the top level. Changes
in directives are frequent and programs are built on such information
about objectives and related parts of the program as happens to be
available. When such a program is put together as of a given cut-off
date, it is found to have parts which vary widely in basic objectives.
Those parts of the program which are closely related to the basic tactical
plan are found to be comparatively up to date, while those parts which
are logically several steps removed may represent objectives which are
already obsolete.

The second stage marks a recognition by the staff of the need for con-
sistency. It is directed that a single and consistent program shall be
developed with objectives and assumptions as of a given date. But fre-
quent directives modifying or totally changing these premises continue
to be issued. Since no operator can afiord not to reflect the latest
changes in his operations, such a heroic effort to attain consistency will
have ceased to have operational significance long before completion of
the program and its dissemination to the staff and operating commands.

In stage three program consistency is recognized, not as something
that can be imposed, but as something that must be built into staff
procedures. The program is seen as a logical unfolding of the implica-
tions of the stated objectives as determined by the planning factors or
operational structure. This procedural approach to the problem of
program consistency involves an analysis of the parts of the program
in relation to each other. The responsibility of each staff agency to
furnish program information to the other staff agencies is specifically
defined and a sequence of work established so that prerequisite material
is made available as needed in advance of the program step dependent
on it. In short, a schedule for programming is set up with deadlines
for staff action by all participating agencies. The procedure works best
when programming is set up on a recurring basis so that program changes
can be withheld and consolidated for dissemination at stated intervals
known in advance.

Figure 1 illustrates schematically the application of this procedure to
Air Force wartime program scheduling. The entire program was started
off with a war plan in which were contained the wartime objectives.
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From this plan, by successive stages, as shown by the flow lines, the
wartime program specifying unit deployment to the combat theaters,
training requirements of flying personnel and technical personnel, supply
and maintenance program, etc., was computed. In order to obtain con-
sistent programming the ordering of the steps in the schedule was so
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Figure 1—Schematic diagram of major stepsin Air Force wartime program
scheduling,

arranged that the flow of information from echelon to echelon was only
in one direction, and also the time phasing of information availability
was such that the portion of the program prepared at each step did not
depend on any following step. The major difficulty with this procedure
was that it took too long. Even with the most careful scheduling, it
took about seven months to complete the process.

Stage four represents an attempt to cut the time required by a partial
gacrifice of consistency for the sake of increased timeliness. This is
accomplished by establishing the entire programming proeedure on a
recurring cyclical basis, with a partial overlap between successive eycles,
so that some material pertaining to a program aiready computed can
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feed the current sequence as a first approximation for program informa-
tion which otherwise could only be made available much later. Data
extracted from a previous program must be carefully selected, in order
to insure that the data used are either for activities which remain fairly
stable through successive programs or for activities which exert a com-
paratively small influence on the portion of the current program to which
they contribute. By this device it is possible to shorten considerably
the total time required to complete a program, at the expense of some-
what deereased accuracy in certain parts. The increase in aceuracy
resulting from the development of more timely programs more than
offsets the loss in accuracy resulting from this approximation procedure.

Stage four was virtually achieved in the Air Force during the last
year of World War II.  The general uncertainty as to objectives which
followed the war, however, resulted in relatively large changes in objec-
tives between programs. This made the stage four procedure impractical
and, owing to the long time period required to complete the full program,
program scheduling was dropped as not currently practical. The conse-
quent attempt at a parallel development of all parts of the program
simultaneously has inevitably led to eonsiderable inconsistency among
the parts of recent programs. We are now gradually reinstituting modi-
fied program scheduling procedures of the same general type used during
the last years of the war.

The chief obstacle to the achievement of consistent programs appears
to be the extreme length of time required for the computation of pro-
grams where the number of activities involved is very large. There are
three components to this time problem: a communication element, an
arithmetical element, and a decision element.

Let us examine each of these in turn. The time required for com-
maunicetion between slaff agencies can be materially reduced by careful
scheduling of the work of each agency and of the flow of program docu-
ments between agencies. Where dozens of different staff agencies are
involved, however, there is of necessity a considerable lag involved in
communication. An agency can seldom be expected to write, type,
gign, and transmit & document to another agency in less than a day or
two. Even if no time were consumed in actual work, the time lag result-
ing would be unacceptable. The only cure for this would seem to be
centralization of the work; but we have already seen that the complexity
and diversity of the information required is such as to preclude successful
completion of a program by any one man or small group of men. A pro-
cedure is needed whereby the information available in the many staff
sections can be brought together in one place in advanee of the program
problem and then assembled mechanically.
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The arithmetic element is the simplest to cope with. Once the under-
lying structure of the operations involved is analyzed and reduced to a
systematic and explicit form, most of the relationships involved are found
to be of a simple character which can readily be mechanized. This re-
quires a quantitative analysis of the relations among the various items
to be programmed. If we are programming gasoline, for example, we
need to establish relations between gasoline consumption and flying time
based on the statistical records of each. From such systematic studies
a set of planning factors can be developed. The complete set of planning
factors for one activity, a complex operation, or the Air Force as a whole,
expresses the structure of that activity, operation, or the Air Force.
The structure thus defined is the planner’s basic tool.

In general, structures are not fixed once and for all but require con-
stant serutiny. A distinetion must be made between structures which
are determined by technological relations and those which have been
established by statistical analysis. The technological structure of a
single activity may be considered fixed from the outset. If the activity
should be redesigned so that the factors involved are changed, it is best
to eonsider that a new activity has been substituted for the old and
proceed with the programming accordingly. If, however, we are dealing
with structures which are statistical in nature, we must proceed more
cautiously. Two or more activities may be lumped together and rela-
tions established between the aggregate quantities involved. The pro-
portions of these activities entering into the aggregate may be subject
to change. Only in the event of stability in the relative importance of
the included activities is it useful to program with the aid of statistically
determined structures. This is the basic weakness of all programming in
terms of aggregates.

The decision making involved in the programming process is of two
types. The first includes decisions which are required because of initial
failure to define objectives in precise terms. Care in the initial state-
ment of objectives can eliminate this problem.

The second type of decisions required is that resulting from failure to
define adequately in advance the complete range and structure of the
types of operations or activities to be performed. Decisions respecting
changes in the structure of operations should, in so far as possible, be
made in anticipation of program computation rather than held up so as
to delay it. However, over-all limitations may force changes in the
strueture of operation which cannot be anticipated. When thiz hap-
pens, it is usually best to complete the program with the structure as
initially defined and then to alter the structure in a later revision.

We have been discussing the problems of consistency and timeliness



194 M. K. WOOD AND M. A. GEISLER [PART 11

in relation to program planning. Another major deficiency of existing
programming procedures ig the inability to consider adequately alterna-
tive courses of action. In general, there are many possible programs for
accomplishing a given objective, The possible variations include not
only different combinations of activities in the same time period but also
different time phasing of activities. Thus, in addition to choices be-
tween, for example, more bombers and fewer fighters in the same time
period, there are choices like that of fewer bombers now and more later.
The direct consequence of the necessity of making choices with respect
to time phasing is a vast increase in the complexity of the planning prob-
lem. For now, instead of activities and items which have constant
definitions through all time periods, each activity and each item must
be particularized for each such pericd. Thus a B-29 Air Force bomber
is not simply a B-29, but a B-29 available in a certain time period, A
Pilot Training School is not a continuous activity, but a series of distinet
activities in & succession of time periods.

These complexities have been spelled out to indicate a whole range of
planning problems which, because of the present difficulties of computing
alternative programs, receive little or no consideration. Se¢ much fime
and effort is now devoled to working oul the operational program that no
altention can be given to the question whether there may not be some better
program that s equally compatible with the given conditions. 1t is perhaps
too much to suppose that this difference between programs is as much
as the difference between victory and defeat, but it is certainly a signifi-
cant difference with respect to the tax dollar and the division of the total
national product between military and civilian uses.

Consideration of the practical advantages to be gained by comparative
programming, and particularly by the seleetion of “best” programs,
leads to a requirement for a technique for handling all program elements
simultaneously and for introducing the maximization process directly
into the computation of programs. Such a technique is now in prospect.

2. YorMuLATION OF THE MATHEMATICAL MODEL

As diseussed in Chapter I, we are attempting to solve these problems
by the construction of a mathematical model of Air Force operations
which ean be manipulated with a large scale digital electronic computer
or, as an interim measure, with the punched card electrical accounting
equipment now available. In constructing the mathematical model of
Air Foree operations we have used the special finite model discussed in
Chapter II. An Air Force program then consists of a schedule giving
the magnitudes or levels of each of these activities for each of a number
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of time periods within the larger general time interval covered by the
program.

FEach of the activities has certain requirements for real estate, equip-
ment, supplies, personnel, funds, collectively referred to hereafter as
items. The interrelationships between activities and the equations ex-
pressing them are perhaps best explained through the medium of an
example. For this purpose a simplified model of the Berlin airlift has
been chosen.

Consider first the actual flying operation itself. 1t produces supplies
in Berlin; it requires aircrews, aireraft, and runways for its operation;
it consumes funds for gasoline and for pay of aircrews and ground per-
sonnel. It also uses up part of the aireraft inventory as a result of
crashes and normal wear and tear. Thus there are two types of coeffi-
cients for each item, called input coefficients and output coefficients. The
coefficients for all items together eompletely define the activity. The
input coefficients define the amounts of each item required at the begin-
ning of a unit time period or consumed during the time period to permit
unit amount operation of the activity; the output coefficients define the
amounts of each item left over at the end of a unit time period or pro-
duced during the time period as a result of unit amount operation of the
activity.

The input coeflicient is obtained as the sum of the capital equip-
ment, the attrition, and the consumption, all of which must be on hand
at the beginning of the time period. The cutput coefficient is the sum
of the eapital equipment (which normally equals its input value) and
the production per unit of the activity, both of which are available at
the end of the time period. The capital equipment consists of items
which are utilized by the activity in carrying on operations but which
remain essentially unchanged at the end of the operation. Real estate,
aireraft, and operating personnel are usually in this category.

The derivation of the input and output coefficients is illustrated in
Table I. The coefficient for the 95,000 tons of supplies delivered in
Berlin has been put into the consumption column and giver a minug
sign, instead of being shown in the production column, because, under the
rule just deseribed, the output is considered one time unit, later than the
input, whereas the delivery of supplies by air is & continuous process
which involves a negligible time lag in terms of the size of time units being
used. This time lag is the essential distinction between the input and
output coefficients as they are used here, rather than an implication of
direction of flow which might be inferred from the words.

The unit “‘crew capacity’’ has been used and treated as a consumption
item in place of using “‘crews” as a capital equipment item because the
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loss of crews as a result of the operation ig not a function primarily of
the amount of flying but of the age distribution of the crews in terms
of the length of time they have been flying the airlift. In this example
a policy of retiring airlift crews to other less exacting jobs after six months
of flying the airlift is assumed. This is reflected in activities V and VI
and in items 3 and 4 in Table II. Item 4, “new crews,’”’ represents

TasLe I. Compvrarion oF INpUT AND QurPpur COEFFICIENTS

ACTIVITY II—Y¥LYING THE AIRLIFT *

Required at the Beginning of Available at End of
Time Period Time Period
Ttems Unit of
Measure Capiial . Con- Total Capital Tatal
Equi Attri- sum Input Equip- Pr(::duc— Output
auip- tion MP- ) et tion Coefli-
ment tion . ment .
cient cient
Supplies in Berlin | Thousands —95 —95
of tons
Runways Number of 1 1 1 1
runways
Crew capacity Number of 134 134
crews
Aircraft Number of 39 5 44 39 39
aircraft
Money Millions of 8.7 8.7
dollars

* Unit of aotivity: 10,000 flights; unié of time: three months.

crews which have just started their six-month tour of duty on the airlift;
item 8, “experienced crews,” represents crews which have completed
half of their six-month tour. One hundred one erews of either type will
produce 100 units of crew capacity; if experienced crews are used
(activity V), no crews will be left as they are retired from the airlift,
whereas 100 experienced erews will remain if new crews are used {(activity
VI). New crews for activity VI must be proeured from ‘“{raining new
crews” (activity VIII). In training, an average of 67 new crews acting
as instructors at the beginning of the three-month period will produce
1,000 new crews. Actually the production may be weekly during the
period, but it is shown in this simplified model as if it all occurred at the
end of the three-month period. It is further seen that 44 aireraft are
required on the airlift to operate 10,000 flights in a three-month period.
Thirty-nine of these aircraft are required for the continuous operation,
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and 5 extra are required as replacements for aircraft which crash or are
worn out during the operation.

The unit coefficient in activity I, “supplying Berlin,” merely provides
that the amount of supplies delivered to Berlin will be expressed in
thousands of tons. Activity 11, “flying the airlift,”” will deliver during
the period 95,000 tons of supplies for 10,000 flights. Operating and
support costs for this will be $8,700,000, as seen by the coefficient of 8.7
on the money row under activity II. The input coefficient of unity
against the runways item of activity I1 means that each runway is
capable of supporting 10,000 flights during a three-month period. The
companion output coefficient of unity indicates that the runway is still
available for use at the end of the time period.

In order to increase the level of activity beyond that which can be
supported by the available runways in Berlin, additional runways will
have to be constructed. (It is here assumed that there is an excess of
runway capacity at the western termini of the airlift.) Aectivity 1IT,
“ponstructing runways in Berlin,” is constrained to take on integral
values, as can be seen from the restrictions on the variables given under
Table II. A look at the coefficients of activity I1I shows that, in order
to construct one runway in Berlin, 2,000 tons of supply (e.g., steel mat-
ting, traffic control equipment, bulldozers, ete.) as well as $1,230,000
will be consumed during the three-month period. At the end of the
three-month period, one runway will be ready for use.

The purpose of activity IV, “slough-off of unused runway capacity,”
is to use up any part of a runway which may not be used because the
airlift activity is not composed of units of exactly 10,000 flights. Aslong
as activity IT provides an integral number of runways, we will never, by
this device, be creating programs which utilize a portion of a runway.

Thus far the individual activities have been described. It is pertinent
now fo discuss the equations which interrelate these activities. Table JI
may be considered a table of detached coefficients from which the equa-
tions shown below can be derived. The basic rule is to multiply the out-
puts of each activity per unit of activity by the level of the activity in a
given time period and sum for each equipment item. This gives the
total available as inputs for the next time period; accordingly, each sum
of inputs for period ¢ is equated to the corresponding sum of outputs
for period ¢ — 1.

Equation (1) states that the tonnage supplied to Berlin, ¥, in any
period equals the amount shipped in, 95z, less the amount used to
construct new sirfields in Berlin, 2z§?. It should be noted that all
output coefficients for this equipment item are zero; hence no activity
level for the previous period appears in this equation.
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Activities
! ¥l i th m 8l I‘{x i UY
: ying the : ough-o sing
Ttem Suﬁ’g:f-{;ng Ail'%lft C%'SE;:;;;“K of Unused Experienced
(per thousand (per ten in Berlin Runway Crews
tons) thousand (per runway) Capacity (per hundred
flights) ¥ (per runway) Crews)
It 0f I 0 I 0 I 0 I o
1. Supplies in Berlin * (thousands of tons) 1 -05 2
2. Runways in Berlin (number of runways) 1 1 1 1 1
3. Experienced crews (number of crews) 101
4. New crews (number of crews)
5. Crew capacity * (number of crews) 134 —100
6. Aircraft (number of aireraft) 44 39
7. Money (millions of dollars) 8.7 1.2
Symbol for Quantity of Activity during fth Time Period
' 2 0 o’ 2 0 # =012 - 20 8 =0
¥ See footnote 1.

+ The figures shown in this table are illustrative and are not to be used in planning.

17 represents total énput (per unit of activity) at the beginning of period, O represents output at end of period. However, for starred items it is Aow during

a three-month period where + means flow consumed by the activity and — means flow produced by the activity.
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Activities
VI - VLII £ of VIII IX X
fsing ough-otl o Training Storing of Exogenous
Ttem (I;eiwhl?;gmsd Urbu:]ig c%;ew : Nethrewsd Unused Supply
(per hundred per thousan Aircraft {t — 1)th
crews) crews) crews) {per aircraft) Period
I 0 I o I o I o I )
1. Supplies in Berlin * (thonsands of tons)
2. Runways in Berlin (number of runways)
3. Experienced crews (number of crews) 100
4. New crews (number of crews)} 101 67 1,000 o
5. Crew capacity * (number of crews) —100 1
6. Aircraft (number of aireraft) 47 43 1 1 Afe=1
7. Money (millions of dollars) 024 2.9 B
Symbol for Quantity of Activity during #th Time Period
= =20 o 20 o z0 =%z 0 24 2 1

(1) 2 + 20" = 952

(2) xg) +:€¥) — xél—l)‘_l_z&!—]) +3g_1)
(3) 101z = 1008~V

() 101¥ + 6729 = 1,000z8 " + cOsP

Eguations Represented by Table I1:
(5) 1342P + = 100z + 10028
(6) 44z’ + 472 - =
= 302 "1 + 430 + A~V + 447
(1) 8.7 + 1.2v + 002428 + 2.9z = B¢V

P =1 if t=1, and 89=0 if t=1)
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Equation (2) states that the number of runways available for use in
the tth period, (2 + z{), is equal to the number in use in the (¢ — 1)th
period, (z¢ Y + i~ 1}) plus the number construeted, z§ .

Equation (3) states that the level of experienced crew activit.y during
the tth period is equal to output of experienced crews from new crew
operations of the previous period.

Equation (4) states that the new crews produced in training during
£ —1, 1,000z¢"", are shared between training, 67z, and overseas
operations of new erews, 101z, during the #th period. C‘” represents
the initial availability of new crews at the start of the operation.

Equation (5) states that the crew capacity produced by activities V
and VI must be equal to or greater than the amount used in airlift
operations. The level zi”, being nonnegative, assures this condition.
It will be noted that crews, even if not used, must be paid, fed, housed,
and administered. Their nonuse costs $24,000 per crew for three months.
This takes care of continuing expenses that are ineurred if bad weather
sets in and curtails operations; this is the reason why zi” appears in
equation (7).

Equation (6) states that the input requirements of aircraft during the
tth period for activities of training, airlift, or storage is equal to the
output of these activities for the previous period plus any new procure-
ment of aireraft, 4¢™,

Equation (7) states that the amount of money required for support
of all activities equals the amount of money, B, made available
from outside the system.

It will be noted that each of these equations relates the activities of a
time period to the activities of the preceding time period. The activities
of the first time period are related to the initial inventories of items on
hand through the exogenous supply activities. If the program being
constructed is to cover several time periods, there will be as many sets
of these equations as there are time periods. Thus, if we represent a
single set of these equations by a rectangle, we may represent the
complete set of equations for a program of four time periods as in
Figure 2

The cocfficient matrix of each set of equations is characteristically
rectangular, as is the complete matrix obtained by putting together the
matrices for the several time periods ecomprising a complete program.
That is, there are more activities than there are items. Remember that
the variables in the equations are the levels or magnitudes of the various
activities and that there is one equation for each itemn. This corresponds
to the obvious fact that, given certain quantities of various items, there
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are, in real situations, usually many different sets of actions which can
be performed, completely using these items. In the airlift model being
considered, a decision must be made in each time period as to whether
any of the tonnage flown into Berlin will consist of construetion mate-
rials and, if so, how much. By choosing to build 4 runway in any par-
ticular time period, at some loss of supplies in the current time period,
we may get increased deliveries in the next time period (provided that
aircraft, crews, or money is not in short supply). To prepare a program
it is necessary to provide some statement of objectives which will permit

Activity Levels over Time

Exogenous =0 &P LB LW
t=1 I initial
£=2 : |

C |
t=4 | I

Ficure 2

us to select from among the many possible solutions satisfying the system
of equations that particular solution which best accomplishes our objec-
tives.

In the case of the airlift example, we might have a definite schedule of
net tonnages available in Berlin which we desired to meet over several
successive time periods, We would then specify the levels of activity 1
for each of the time periods involved and would seek that solution, con-
sistent with the delivery of these tonnages, which would minimize the
cost, that is, the exogenous supply of money, B®™, summed over all
time periods, so that B® + BY +...4 BY™D = min.

Alternatively, we may have a definitcly limited supply of aireraft
or money and seek to maximize the tonnage supplied to Berlin. We then
have z{! + 22 4.+ z{® = max.

Thus, when we apply this objective concept to the above discussion
concerning the choice of use of tonnage between runway construction
and supplying Berlin, the solutions obtained from our formulation of the
problem do not necessarily provide optima within each time period but
do give the optimum over all time periods of the program. Therefore
these solutions would provide for some sacrifice of supplies to Berlin
in a given time period for later benefit through availability of added run-
way capacity, so that, over all time periods of the program, maximum
tonnage would be delivered to Berlin,
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3. Ture TriangrLAR MODEL

Computing techniques are now available for solution of small linear
programming problems. (See Chapters XXI, XXIV, and XXV.)
However, for accurate over-all Air Foree planning, the size of the re-
quired model is such that conventional punched card computing equip-
ment, or even the interim electronic computer being built for the Air
Force by the National Bureau of Standards, is not sufficiently powerful
to cope satisfactorily with the problem of choosing the optimum activities
and activity levels over time.

In order to obtain a programming procedure which would be imme-
diately useful with presently available computing equipment, we have

Activities
Exogenous  xf &7 (P =

Initial

O TR bhTe e Te e Th e e
B unan nuuy nuged

=P N Pt B e g L0 R e

o
N
(SR N ]

t=4

Figurk 3

been forced to use a determinate and hence less general formulation of
the programming problem that parallels closely the staff procedure illus-
trated in Figure 1. We have called this a triangular model because in
it the matrix of detached coefficients, when arranged as in Table III and
omitting the ‘‘initial” part, assumes a triangular form, with all coeffi-
cients above and to the right of the principal diagonal being zero. Thus
the activities and items are 80 ordered that the levels of any one activity
over time depend only on the levels of the activities which precede it
in the hierarchy. This means that in the computation of the program
we suceessively work down the hierarchy, at each step solving ecompletely
for the levels of each activity in each of the time periods before proceed-
ing to the next activity, as shown by Figure 3.

This computation is very much like that found in the solution of a
et of n simultaneous equations in 7 unknowns when the set is reduced to
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one equation in one unknown, and the values of the successive variables
then are obtained by the process of back solution. Obviously the
triangular model does not permit answering some of the questions an-
swered by the rectangular model discussed above. Like the staff pro-
cedure described eatlier, this triangular model permits generation of the
resource requirements to support a given set of quantitatively stated
objectives, but it will not permit the determination of the maximum
amount of a qualitatively stated objective which can be attained with a
given resource availability. In this sense the triangular model is less
general than the rectangular model. Even in the generation of resource
requirements for a given set of objectives, the triangular model will not

TaABLE III. TRIANGULARIZATION OF BERLIN AIRLIFT MoODEL

Autiy, | Dostiog | Traiming | o o e
Item Fivi Weary New Aireraft
ying Crews Crews ire
e o z P
Supply shipped by airlift In -1
Out
Weary crews In 1
Out 125
Active crews In 130 0.05
Out 1 1.00
Aireraft In 50 0.06
Out 49 0.05 1
Money In 9,000 5 10.00 200
Equations
o) af’o = 2{°,
2 12520 = 2{?,
(3) ag)o + 1303:50 — (t 1 + 0 052:(!) (!— 1)
) af’s + 502> — 4920 ™Y +0.062{" — 0.052§ T = 27,
(5) 000:3“) + 528 + 1025° + 200zP = money required in #th period;

where o’y = program of tonnages to be delivered in ¢ = 1,2 3, and 4 (ie, 1.5, 1.6,

1.8, and 2.0); aé.)u = inventory of crews initially available for airlift, (i.e., 200 0,0,0);
ag’o = inventory of aircraft initially available for airlift (i.e., 25, 0, 0, 0).
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necessarily yield optimum solutions if there are real choices between
alternative production processes. To illustrate the triangular model let
us consider a somewhat modified presentation of the Berlin airlift model.
If we assume that the airlift program is generated by the supply tonnages
to be airlifted into Berlin in successive time intervals, the first activity
will be “airlift fiying,” designated by zi? as shown in Table 1II. Equa-~
tion (1) expresses the relationship that the values of z? will be succes-
sively equal to the supply tonnage values, designated by oY, specified
for each time period. These values of o’ are shown at the end of
Table III. Table IV gives the vatues of 2 obtained from the program

TasLe IV. THEORETICAL BERLIN ARLIFT PrROGRAM

Time Airlift Resting | Training Storing | Procuring
- Flyin Weary | New ) Aireraft, | Money
Period ying Crews Crews Aireraft <
P o) xét) P
First 1.5 0 10 i6 o 213,600
Second 1.6 188 49 3 0 15,830
Third 1.8 200 62 1 10 19,820
Fourth 2.0 255 37 0 N 22,005

values established for this problem, if the specified activities stay level
at the value specified in the last time period.

The next activity whose levels can be determined is “resting weary
crews,” designated by z3?, because it depends solely on the values of
Zi=,  This is shown by equation (2). The two activities involved in
equation (2) are separated by one time period, beeause in this model the
crews retire after one time period of flying the airlift, and therefore the
crews resting in the current time period are derived from those flying the
airlift in the previous time period. Table IV shows the values for 2
obtained by application of equation (2). It is to be noted at this point
that we can, and have, solved for the levels of activities z{° over all
time periods before we go on to the next activity. This ordering of the
computational steps is an advantage in program development because,
when appropriate computing equipment is used, it permits the study of
the program levels as they are being generated, so that errors in the
program or impossible programs may be detected before the whole pro-
gram is generated.

The third activity in this model is “training new crews,” designated by
z§. It depends on the levels of the previous two activities and also on
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its own level in the previous time period. This is so because we must
train instructors in the previous time period in order to have sufficient
mstructors available in the current time period. This is & usual dynamic
condition encountered in economic and similar planning problems, and
the simultaneous equations involved are solved by iteration. A further
aspect of the third equation is that there has been introduced an initial
stock of aircrews from which we can draw before starting the training
activity, The levels of this activity, based on the airlift supply pro-
gram, are given in Table IV.

The fourth activity, “procuring aircraft,” designated by z{, comes at
this position in the model because it depends on z{ and . Substitu-
tion of the determined values of these two activities in equation (4)
readily gives the values for = shown in Table IV. It is to be noted
that the value for z5 is not given in this table because z{® depends on
23, which was not specified in the program under discussion.

It will be noted that, in the formulation of the equations for the airlift
model, each item was uniquely related to the single activity which pro-
duces it. This means that the slough-off and storing aetivities were not
included in the structural equations.

However, in the computation of the program it is necessary to include
the storage and slough-off activities, as shown by the inclusion in
Table IV of the activity “‘storing aircraft.” A need for establishing this
activity occurs because the inventory of aircraft available at the start
of the program is greater than required by the levels of the activities
utilizing aireraft. Henece the surplus of aircraft must be stored, and
an activity for accomplishing this is created. Thus, although the
triangular model usually specifies explicitly only the producing activities,
the complete system has implicit within it additional aetivities which
may store or dispose of surplus or unutilized eqguipment. Thus, in
point of fact, in computing a program we may require two to three times
as many activities as items.

The last equation in Table III, (5), is used not to determine the level
of an activity but to determine the value of an item designated as
“money.” No activity is associated with the item money in this model
because the activity involved, that of appropriating money, is exogenous
to the Air Force. Consequently the last equation involves only input
coefficients (i.e., equipment flowing toward each activity requiring
money).

Table IV thus gives the program of required support activities gen-
erated by this model, which must be atfained if the tonnage deliveries
are to be satisfied. The model has been so arranged that a determinate
and unique statement of these requirements iz obtained. This is
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definitely & more limited approach to the programming problem,
motivated largely by the need to stay within computing capabilities.
In some cases arbitrary decisions must be made to establish the neces-
sary hierarchy of activities, and this is a definite drawback of the pro-
cedure. However, in the practical job of fitting Air Force operations
into a mathematical model, it has not been found difficult to fit the
triangular arrangement, nor has it been necessary to distort materially
the true relationships in doing so. In general, we find that there is
only one major type of productive activity for each type of item; this
js the principal prerequisite of the triangular model. There is, of course,
no a priori reason to assume that other economies will be equally adapt- -
able to formulation in a triangular model.

Computationally, however, the triangular model yields a tremendous
advantage over all known alternatives. With this formulation we have
been able to solve programming problems involving 100 activities and
36 time periods in one day by using present punched eard equipment,
obtaining answers which are realistic and useful. In the more general
formulation this would be represented by 3,600 equations in 3,600 un-
knowns.

One other significant advantage of the triangular model which should
be noted is that it frees us completely from the necessity of using linear
relationships between inputs and activity levels. In the illustration
given above we have used linear relationships because the relationships
appear to be fundamentally linear. However, in computing solutions
with the triangular model the levels of each activity over time are com-
pletely determined by the levels of the preceding activities in the model,
and consequently we may use any functional relationship between
activity levels and input requirements which seems appropriate to the
faets, provided only that the function used determines uniquely the
inputs from the activity levels. In the succeeding section on the re-
formulation of the model with flow coefficients an example is given in
which arbitrary function tables are used in lieu of input coefficients.

One of the difficulties with the triangular model is that complete
gpecification of the objective activities and complete specification of the
initial status are quite likely to set up an overdetermined set of equations
in which no solution is possible. Another difficulty is that the triangular
system has little slack in the time dimension; every requirement must
be met exactly on time, unless there is a stored surplus remaining from
the initial status. The model makes no provision for the anticipatory
creation of temporary surpluses in order to meet future peaks in demand.
Thus it may require rapid and erratic fluctuation in production, or it
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may require continued rapid expansion of production at rates in excess
of those which experience indicates can be attained.

In order to overcome these difficulties we have tried to relax somewhat
the rigidity of the triangular model and to introduce certain limited
elements of optimization. Thus we have modified the formulation to
specify the levels of the objective activities for a time span starting with
some future date, rather than with an actual eurrent status. This
eliminates the possibility of setting up an overdetermined set of equa-
tions, provided that we place no restrictions on rates of change of activity
levels within the period prior to the starting date of the program. Such
overdetermination is almost certain to occur in a determirnate system
when both the initial status and the objectives are completely specified
quantitatively. This also conforms much better to the usual formula-
tion of the peacetime programming problem in the military establish-
ment, iIn which the objectives to be attained are removed by a sub-
stantial time interval from the eurrent status. The problem is then to
define the status to be attained at some future date that will be con-
sistent with the accomplishment of stated objectives after that date.
In doing this we also generate a detailed program for accomplishing
objectives after that date.

This relaxation of the conditions of the problem not only eliminates
the probability of overdetermination but also creates a certainty of
underdetermingtion. To arrive at a solution we must now impose some
further conditions on the rates of change in the levels of the production
activities after the future date for which we wish fo define an initial
status.

In most types of production aetivities, whether pilot training, air-
craft production, or gasoline refining, there appear to be inherent
limitations on the maximum rates of expansion which can be attained.
Extensive analysis of World War IT experience, together with industrial
planning studies made since the war, has indicated statistically that for
most industries or activities the highest expansion possible is for output
to increase, 2s an approximation, by a constant geometrie rate from the
production level on the date the expansion is initiated, after a time lag
of varying length. For example, the pilot-training establishment might
approximately double its rate of output every five months, after a lag
equal to the length of the production pipeline, or about ten months.
Similarly the aircraft industry might double its output every eight
months, after a lag of about one year. This type of relationship seems
to hold equally well for smaller components, such as production of land-
ing gear struts, propellers, engines. In other words, it appears that in
most production processes we may assume that the maximum percentage
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rate of production expansion ai any given time after the start of the
program is a constant which depends on the type of activity but is rela-
tively independent of the initial production level.

Figure 4 illustrates schematically the problem under consideration.
The eumulative program requirements curve is characteristically
8-shaped, being first concave upward and later concave downward.

Production

] ] ]
t=0 ¢t=1 =2 t=n

Ficure 4—Determination of minimum production level at ¢ = ( consistent with
cumulative program.

The family of alternative cumulative production curves, 4, B, and C,
are characteristically concave upward, each representing a different initial
production rate. It is clear that curve B is the most efficient production
curve because curve A more than meets the requirements of the program
whereas curve C does not satisfy the program requirements during a
portion of the period. Curve B is characterized by being tangent to
the cumulative program curve, and it is obvious that beyond the point
of tangency the production rate need only be maintained so as to just
meet the program. A further property of curve B is that it minimizes
the amount of storage necessary before the cumulative produetion meets
the cumulative program. Thisstorage is necessary because the program,
in the initial stages, expands more rapidly than production.

In order to fit the production curves to the program requirements,
we must know either the initial production rate or the initial inventory.
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Since, under the new formulation of the problem, the initial point of the
program is removed by a time span from the present, we do not yet know
either. We do, however, know both the initial position and the produe-
tion rate at the present. If we are willing to make an assumption of,
say, linear increase or decrease in the production rate between the present
and the initial program date, the determination of either the inventory
or the production rate at the initial program point will determine the
other. This is made clear by Figure 5.

¢
//kff(t)dt't-e
0
&
i 0&“ / Cumulative
\\ program
requirements
b ]
S~
leg ”e\- d -~ kf(t}
pree,é‘;e;-. e
S "
‘T production expansion cap_a_b‘“-‘t! —fe)*
ro S ——
R
¢
Present t=0
date Initiat program

date
¥ () = standard production growih function starting from unit production rate at ¢ = 0.

Firaure 5—Determination of inventory and production rate at initial program
date.

The ordinate on the chart is the quantity of the item concerned; the
abscigsa is the time dimension and is measured from an origin in the
center of the chart, which is the assumed initial program date. The
left side of the chart represents the interval between the present date
and the assumed initial program date. The lower two broken lines are
production rates; the upper two are inventories or cumulative avail-
abilities; and the solid line is the cumulative program requirement.
The problem, then, given the cumulative production requirement curve
(solid line), the present inventory, b, and production rate, a, and the
basic production expansion capability function, f(¢), which is plotted
from a unit initial production rate at ¢ = 0, is to find the inventory, e,
and production rate, k, at the initial program date, and the cumulative
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availability curve (heavy broken line) on the right side over the period
after the initial program date.

The cumulative availability curve (heavy broken line} on the right
side is the sum of the initial inventory, ¢, at ¢ = 0, and the cumulative
availability from production, which is k& j; f(@) di. Obviously, if either

e or k is known, the other can be determined. Since neither is known
a priori, we must introduce another condition. We know the initial
inventory, b, at the present time; it is a simple matter, when we know
the attrition or depreciation rate on the item, to calculate ¢, which is
the present inventory discounted to the initial program date. We have
then only to determine d, the additional inventory at the initial program
date which results from production over the interval from the present
to the initial program date. We know the present production rate, a;
if we are willing to assume some functional form, as for instance a
gtraight line, for the production rate between the present and the initial
program date, we may then determine d as a function of k. But e is
merely the sum of ¢, which is known, and d; and so we may get an expres-
sion for e in terms of &, or vice versa. Substituting this back into the
expression for the cumulative availability curve, we may then uniquely
determine ¢ and k. These computations can be made by conventional
punched card equipment,

An interesting by-product of this technique is that the same fitting
procedure can be repeated successively beyond the first point of tangency
in order to obtain a smooth production curve., This is also accomplished
through the punched card procedure.

4., RerorMULATION WITH FLow COEFFICIENTS

The duration of the activities of the Air Force varies over a consider-
able range of values, from a single instant to several years. It is there-
fore difficult to fit these activities into a discrete model based on fixed
time intervals, and it is also clear that some loss in accuracy must result
if we are constrained to retain the concept of fixed time lengths in
developing the coefficients for the model. To obviate this difficulty
we have reformulated the basic concepts underlying the eonstruction
of the coefficients for the models. The items or commodities entering
into the model are now considered in terms of stocks and flows. Stocks
are the inventories of the various items or eommodities required by the
activity to be on hand as long as that activity continues. Thus the
personnel manning a training base, or the aireraft within a group, are
stocks of equipment required to be on hand in order for the training and
combat activities, respectively, to operate. The flow coefficients describe
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the rates at which the commodities involved in an aectivity are con-
tinuously consumed or produced by the activity per unit period of its
operation. Thus gasoline consumed in aireraft flights, or unserviceable
engines produced as the result of aireraft activity, are examples of flow in
our structure. Capital equipment in this formulation is always treatved
as stock. Noncapital ifems may occur as either stock or flow. Thus
gasoline is required in both forms, first as stock in terms of an inventory
to cover lead-time in distribution and second as flow to be consumed in
flying activities. Attrition or depreciation on capital equipment may be
considered a flow.

Continuing this type of formulation, we find that we are released
from the use of fixed time periods in the initial formulation of the coeffi-
cients of the model. Setting up a basic time length of sufficiently small
duration so that the activities can be accurately expressed in terms of
-the unit time lengths, we can introduce both the stocks and flows into
the model by means of flow coefficients. All inputs of stocks are con-
sidered equivalent to flows toward the activity (indicated by a plus sign
attached to the coefficient), taking place during one unit time period in
advance of the time they are required to be on hand. All releases or
outputs of stocks from an activity are considered equivalent to dows
away from the activity (indicated by a minus sign attached fo the coeffi-
cient), taking place during one unit time period in advance of the time
they can be released or are produced. All flows are shown as rates of
item inputs (<} or outputs (—) per unit volume of activity per unit
time period with two time coefficients identifying the times at which the
flow is to begin or end. Thus we are adopting the coneept of a con-
tingous model in the underlying formulation of the coefficients. This
permits continuous balancing of requirements and availabilities over
time, establishing storage as required if an overage exists, and establish-
ing procurement or production as required if a shortage oecurs.

5. ExampLE oF DyNamic MopeL witH FLow COEFFICIENTS

As an llustration of the proeedure used here for presenting the data
under this kind of formulation, an illustrative but fictitious example of
an Air Force model has been set up and is shown in Table V. Consider
the first activity in Table V, “operation of bomber wing.”” The item
produced by this wing is called a “wing operation unit,” with dimensions
of flying hours, or sorties, etc. The coefficient of —1 associated with
the item shows that one wing operation unit is produced by the activity
each week. The time coefficients, from 0 to 1, associated with this item,
show that the output of this unit by the activity iakes place during one



Tapre V. HyeormeTical TRIANGULAR MobpeL oF AN AIr Force OPrRATION sHOWING FUNDAMENTAL RELATIONSHIPS
aND COEFFICIENTS *

Activities
. - . - Procurement of
Operation of Training of Training of Training of Prosurement of Overhaul Procurement of
Ttems Bomber Wing Bomber Wing Bomber Crews Techniolana Boxggehggg:,nd of Engines Eﬁ::’ﬁ:& Gasefine and Oil
Time } Time TFime Time Time Time Time Tims
From To |Amovnty pomp, | Amouat| g0 "o | Amount| oy, | Ameunt | pon 7, | Amount | gy o Amount | prop 1, | Amounty pyor o Amours
Wing operaticn
g 0 1| -1
Bomber wing -5 =4 1 g0 61 {— 1
-4 =31 —1
Bomber crews -5 -4 52 | ~1L 0 5i—1 0 20
-4 =3 —50 6 41 1 0 61 ]
60 61 |- B3| 60 61 —120
Technieal =5 —4 45 | -1 0| L460| -1 0 443 | -1 O 8
personnel 0 8l 50/ 0 81 40 0% 1
80 61 (=—1,050f{ 60 &1 | —445 24 25| —108
Bomber aircraft —6 =5 20 1 —4 -3 5i—4 —3| 10 -1 0} -1
-5 -4 -15 -3 58 1| -3 58 2
57 58 |— 51 57 58 10
Berviceable —4 =3 12 (-3 -2 0 -8 -2 30 -1 0| -5 4 5 -1
enginea -3 -2 —10 { -2 &6l 1,=2 61 2
60 61— 207 60 41| — 30
Bomber aireraflt -5 —4 50 | -3 —2 % -3 -2 45 -1 0 -2 ¢ b 1 -1 [ =1
and engine -4 —3| —48B | —2 59 5| -2 59 25
parts 58 59— 28| B8 59 ) — 45
Giasoline and oil —4 =3 10§ -2 —1 51 —2 -1 30 -] 1] -1
-3 -2 —71-1 & 41 -1 &0 80
58 60 |— 5 59 80| — 30
Funds 0 1 5 0 6l 5 0 81 4 0 25 3 j—25 —24 2 0 & 1 -1 —-H §] -5 —4 1

* This presentation is purely hypothetical, and the sole purpose of presentation is for illustration of technigue,
t Tims is measured in wesks. . L )
t The amounts all tepresent ynit physical quantities (.6, “techajeal personnel” i measured in terms of persons, ete.).

§ Function table coefficients used.
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week, which is the basic time period in which the program is computed.
All the other items appearing under the bomber wing operation activity
are required to generate this one wing operation unit, and their time
coefficients are measured with reference to ‘‘zero” time as the origin.

The second item is ecalled “bomber wing”; it is & major stock item re-
quired by the first activity., It is therefore shown as a flow over the unit
time period previous to its requirement by the first activity. The —5
and — 4 indicate that there is a passage of four weeks between the com-
pletion of training of a bomber wing (accomplished by the second
activity) and its availability for use by the first activity. This means
that, in order to have a bomber wing available as input into the first
activity, the second activity must have produced the bomber wing four
weeks previously, and the time coefhicients of —5 and —4 provide the
time link between the first and second activities. Obviously we could
have inserted intermediate shipping activities between the training of a
wing and its availability for operation, which would obviate the necessity
for showing the lead time in the first activity. The second coefficient
attached to the bomber wing item shows that the ifem is not consumed
by the activity but is an output at the end of the week’s activity, available
for rense in the next time period. Thus, the bomber wing is a capital
item. The item “bomber crews” is shown as a stock input and then
as a stock output one time period later, the difference in the amounts
representing the attrition of crews brought about through operation of
the activity. It should be noted that the crew capital equipment
of a bomber wing (in this example) is 50 crews, so the input coefficient
is the sum of the capital plus attrition requirements for the week.
The fourth item is called ‘“technical personnel” (i.e., the mechanies,
electronics personnel, cooks, etc., needed to support the crews and air-
craft). They are shown only as an input because the technical per-
gonnel capital equipment is incorporated in the equipment item
“homber wing,” and so only an input of replacements to cover attrition
during the week is necessary in order to have the required amount of
capital on hand. As before, the —5 and —4 time coefficients indicate
a four-week delivery time between the completion of training of the
technical personnel and their availability for use in the wing.

The comments on the items “bomber aircraft” and ‘“‘serviceable
engines” parallel those given above for the item on crews. The inpu#,
or positive, coefficient shows the number of serviceable engines required
as stock and as consumption to cover replacement of worn-out engines.
The output cocfficient shows the number of engines left over as stock
at the end of the week’s operation. The same comments as made on
gserviceable engines apply to the next two equipment items, “bomber
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aircraft and engine parts” and “gasoline and oil.” Finally, the equip-
ment item “funds” is shown as an input coefficient, and it covers costs
which can best be associated with this activity. Thus the cost of pay
and allowances of the personnel are reflected, but not the cost of aircraft
procurement, which in this model can better be handled under the
“procurement of bomber aireraft and spare engines” activity itself.

It will be noted that each activity is associated with an item which it
produces. The amount of production of each item required of the

Procurement
level
(doliars}

Program levet

Fiovre 6—Nonlinearity of coefficients resulting from aggregation of four supply
items with disproportionate inventories.

producing activity determines its level. To make this clear, let us con-
sider the following equation, by means of which the level of the activity
“training of bomber wing” in any time period can be established. Let
z1 be “operation of bomber wing’’ activity, and z3, “training of bomber
wing”’ activity. Since the sum of the flows in any time period must
equal zero, the following relationship must be satisfied by the levels of
x; and s

. 1x£t+5) — 12:§£+4) - lmg—am — 0,

where ¢ takes on integral values. Comparable equations may be devel-
oped for the other activities in this model. The simplicity of the flow
formulation, and its flexibility, can best be appreciated by study of these
functional relationships among the activities in 4 model such as the one
illustrated.
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Tt will be noted that the coefficient for the activity “procurement of
bomber and engine parts’” related to the funds is footnoted, because,
in developing these coefficients, we aggregate the individual items and
parts and express their aggregate value in dollars to avoid dealing indi-
vidually with hundreds of thousands of items. Through this aggregation

we have succeeded in reducing the problem to one of dealing with about
100 classes of items. However, in doing this we find that the coefhicient
describing the dollar amount of procurement of items required per unit
of consumption of this item changes with the level of consumption be-
cause, in many cases, the amount of inventory on hand is significant
and disproportionate among the several iters aggregated together. As
a result, we introduce function tables into the computing procedure, in
which the procurement, coefficients in the structure change with the level
of required consumption (i.e., level of program). The kind of funetion
table required is schematically itlustrated in Figure 6. In this figure
we have four equipment items. The inventory of each equipment item
is expressed in terms of the number of program levels it can support,
called normalized inventory. The items are then ranked from the small-
est to the largest normalized inventory (expressed in program units, such
as flying hours, personnel). Item 1 is the item which has the smallest
normalized inventory and hence must be procured first. Item 2 is next
in order, and so on. The envelope outline of the curve, shown as a
solid line, constitutes the nonlinear function which must be handled as a
function table.



Caarrer XIII

REPRESENTATION IN A LINEAR MODEL OF NONLINEAR
GROWTH CURVES IN THE AIRCRAFT INDUSTRY

By Magrsuar K. Woobn!

In attempting to represent the aircraft industry in the diserete linear
model described in Chapters I, IT, and X1, two characteristics appeared
which did not, at first glance, seem to lend themselves to representation
in the linear model. The first of these is the fact that there appears to
be a limit to the rate at which the industry can grow over time, even if
there are no shortages of the materials necessary for the production proc-
ess. This fact was mentioned in Chapter XIT and used in the formula-
tion of the dynamie triangular model. In general, it appears that pro-
duction can expand in geometric ratio, i.e., that the levels of production
in successive time periods may equal, but not exceed, the successive
terms in the series 1, (1 + &), (1 + )%, (I + @)®, -+, (1 + &)*7},
where o represents the proportional increase in production during a unit
time period. This general form of the expansion curve was actually
observed during World War II and also may be derived, with slightly
different coefficients, from studies of future produetion capabilities made
by aircraft manufacturers since the war.

It may be conjectured that this limitation on the growth rate is not
in fact a characteristie of the industry but arises as a result of the cumula-
tive effect of shortages of labor, equipment, materials, ete., which in
turn may be produced by activities with constant input coefficients. 1t
may well be true that, if all the tangible and intangible elements of the
production-process were defined in sufficient detail, and if their input
coefficients were evaluated with accuracy, then it would not be necessary
to introduce this growth rate limitation explicitly into the model. How-
ever, until all these factors can be evaluated with greater detail and
accuracy than is now possible, it appears necessary to introduce the
limiting growth rate as a separate side condition in the model.

This may be done entirely within the framework of the linear model.

1 Acknowledgment is made to George B. Dantzig, U. S. Air Force, and T. E. Harris,
The RAND Corporaiion, for invaluable mathematical assistance in preparing this
chapter.
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To do this, we first create an artificial item which we may call “manage-
ment capacity’” for want of a better name. This item is not observable
or definable as such, and it is evaluated by reference to experienced

expansion rates or production planning studies. We then formulate the
model of the aircraft production activity given in Table 1.

TasLe 1

Tiem Input at Begin- | Output at
ning of Period | End of Period

I. Aircraft 0 1
I1. Management capacity 1 | Y

If the item management capacity appears in no other activity, it will
immediately be seen that the level of the activity whose coefficients are
given above must increase over time at the rate 1, (1 + @), (1 + a)?,
(1 4+ a)® .-, since the output of each period becomes the input
of the following period. If we then introduce a disposal activity, con-
strained to be nonnegative, with a single coefficient of —1 for manage-
ment capacity, the levels of the aircraft production activity must be
equal to or less than the series 1, (1 + ), (1 + )%, --+. Furthermore,
we have insured that in no time period shall the level of the activity
exceed the level in the previous time period by a ratio greater than 1 + .
By appropriate selection of &« we may fit any desired geometric expan-
sion eurve.

The second major problem encountered in representing the aircraft
industry in the linear model is the observed fact that labor costs per unit
of output appear to decrease in inverse geometric ratio to the cumulative
guantity produced. At first glanee this seems impossible to represent
in the linear model. However, the conditions under which this relation-
ship is observed, and the conditions under which planning studies have
indicated that it will oceur, are conditions of expansion of productlon at
the maximum possible rate.

Suppose then that, for purposes of creating the mathematical model,
we arbitrarily split the production process into two nonnegative activi-
ties, P and @, the sum of whose inputs and outputs are to equal the
total inputs and outputs, respectively, of the aireraft production activity,
with the selection between the two activities to be made on the basis
of the minimization of cost, subject to the restriction imposed by the
linear model. These two production activities may be called “high cost
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production” and “low cost production,” respectively. It need not be

assumed that they are physically separable or identifiable, although it is
possible that they are. The subdivision of the production process into
these two activities is here made only for mathematical convenience in
formulating the model. We may then set up the model with the input
and output coefficients given in Table II. The coefficients are restricted

Tasie 11
Activities
P---High Cost Q—Low Cost
Ttems Production Production
Input at | Output at | Input at | Output at
beginning end of beginning end of
of period period of period period
1. Aireraft 0 1 0 1
II. Management capacity 1 a 1 a
III. Production experience 0 1 b ¢
IV. Manpower cost 1 0 d 0

as follows: a > 1, d <1, ¢ = ba, where @ = 1 + « in the previous
model.

Item III, here called ‘“production experience,” is another artificial
item (like item II) which is not physically identifiable or measurable and
is ereated here for convenienece in order to make the model conform to the
observed characteristics. Since we have retained the same coefficients
of 1 and o for item II in both activities, it is clear that the sum of the
two activities is still limited to an expansion rate of 1, a, a®, a3, - |
&'t It is necessary to restrict ¢ = ba in order to insure that the ratio
of output to input for item III, ¢/b, does not impose a more severe
restriction on the total growth rate of production than is imposed by the
output-input ratio, ¢/1, for item II. We must, of course, add to the
model another disposal activity with a single coefficient of —1 for item
111, as we did above for item II.

Turning now to the question of cost, we see that the two sctivities P
and Q have differing manpower costs (item IV) per unit of production.
Since activity ¢ produces at lower cost than activity P (i.e., d < 1),
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and since we are seeking a minimum cost solution, the solution will
always contain as large a proportion of activity Q as is permitted by the
basic equations.

Substituting the above coefficients in the basic equations of the linear
system [see II], and imposing the additional eondition that the total

production (P + @) expand over time at the maximum rate possible
from a rate of 1 at ¢ = 1, we have:

(1) Pt + Qt = at—l, Qt =g — Ph

where P; and @, are the levels of activities P and Q, respectively, at
time ¢. This is the general limitation on the rate of growth of total
production, as discussed above. Furthermore,

_ ?t_l + @iy

(2) Q. .

This is the condition imposed by the input and output coefficients for
item III, plus the stipulation that @ shall always be as large as possible
in relation to P (minimum cost}. Finally,

(3) Q1 = (.

This results from the fact that the initial inventory of item III is zero
at{ = 1, and that activity @ can only be used after some of this item is
produced through the operation of activity P.

Putting ¢t = ¢t — 1, ¢ — 2, ete., in (1), substituting in (2), and solving
simultaneously, we have

a1 — ft—l

(4) Q=——,

bla — )
where f = (¢ — 1)/b.
The cost of production is given by

(5) Ci = P, +dQ.
By substituting (1) and (4) in (5), and letting ¢ = (d — 1)/b, we have
t—1 _ et
(6) C, = at—! + ei__ﬁ__...’i__.
a -

The cumulative production is

t t__l
{7) Z(P£+Qi)=a

=1 a—1




220 M. X. WOOD , [PART 11

It is now desired to select the coefficients b, ¢, and d so that the unit
manpower cost of production will be in inverse geometric ratio to the
cumulative production. For example, let us take the unit manpower
cost inversely proportional to the cube root of the cumulative produc-
tion. Then the cumulative manpower cost will be proportional to the
two-thirds power of the cumulative production. 'Then we desire that

® > = (“t — 1)%

i1 a—1

for & given value of @ over a range of i.

It is apparent that we are more concerned about accuracy in the
total eost function for the entire produetion run of an aireraft model
than in the precise costs for individual time periods within the produc-
tion run. We may therefore elect to fit the function precisely for, say
t = 25, assuming a monthly unit time interval and a total production
run of about two years. It will also be desirable to fit the cumulative
cost function for one intermediate time period, say { = 15, After meet-
ing those restrictions, it is still possible to select arbitrarily the values
of a and d, representing respectively the rate of increase of total produe-
tion per time period and the minimum manpower cost per unit of produc-
tion as the amount of production becomes infinitely large. We may
select @ = 1.1, assuming a monthly time interval, as representing an
upper bound to the rate of increase of total production at 10 per cent
per month, We may then select d at 0.17, representing a minimum unit
manpower cost of about one-sixth that of the first article. Proceeding
then to evaluate b and ¢, for ¢t = 15 and ¢t = 25, we find b = 3.6 and
¢ = 3.95. With these values the fraction of production at the high cost
level just about reaches zero at the end of the twenty-fifth period. A

TasLe II1
; Cumulative)% Cumulative };}fh Sost_
Production Cost action

PPy + @)

1 1.0 i.1 1.00
5 3.3 4.1 0.23
10 6.3 6.9 0.05
15 16.0 10.0 0.01
20 14.9 14.5 0.00+
25 21.3 21.6 0.00+
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larger value of d would make this fraction reach zero before the end of
the twenty-fifth period; then some changes would have to be made in the
model.

Table I compares the resulting values of the two-thirds power of the
cumulative production and the cumulative eost and shows how the high
cost fraction of production changes with time. It is scen that the
cumulative cost as computed from the model is a very good fit to the
two-thirds power of the cumulative production and is well within the
error of the empirical data.

It should also be noted that the unit manpower cost under this formula-
tion has a minimum equal to the value selected for the coefficient d as
the cumulative produetion becomes very large, whereas the commonly
used ‘‘two-thirds power law” implies that the unit manpower cost ap-
proaches zero as the cumulative production becomes very large. It is
believed that the former is intuitively a more reasonable assumption.



Crarrer XIV

A MODEL OF TRANSPORTATION !

By Taaiuing C. KooPMANS AND STANLEY REITER

In this chapter we shall apply the model developed in Chapter III
to the problem of efficient utilization of movable transportation equip-
ment. After discussing the characteristics of an efficient solution to
this problem, we shall indicate how marginal rates of substitution be-
tween flows of transported goods on various routes can be derived.

For the sake of definiteness we shall speak in terms of the transporta-
tion of cargoes on ocean-going ships. In considering only shipping we
do not lose generality of application since ships may be ‘‘translated’
into trucks, aireraft, or, in first approximation,? trains, and ports into
the various sorts of terminals. Such translation is possible because all
the above examples involve particular types of movable transportation
equipment.

The models treated here will be ‘“‘simplified” in several respects. First,
they are static models. We describe the joint output of shipping oper-
ations as a set of cargo flows, to be referred to as the transportation
program, which is assumed to be unchanged in quantity over time. (By
measuring cargo flows on each route in shiploads, we need not preclude
changes in commodity composition of eargo.) Second, we assume that
all ships are of the same type and therefore completely mtercha.ngeable
in each of their uses.

1. A MobeL wite Two Ports

1.1. Commodities and activilies. The model which we consider first is
further simplified in that we assume only two ports, P and Q. The
technology matrix for this medel is given in Table I. At each port two

1 The theory presented in this chapter was originally developed by the former
author partly during, but mostly after, his association as statistician with the (Britigh-
American) Combined Bhipping Adjustment Board and with the British Merchant
Shipping Mission in Washington during World War II. The responsibility for this
chapter rests, of course, with the authors. For a nonmathematical exposition of this
model see T. C. Koopmans [1947], where anather illustrative example is also given.

? The case of railroad equipment is complicated by the “decomposability’’ of trains,
particularly in regard to locomotives.
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TasLe . TecanoLoGy MATRIX ForR A Two-Porrt MopaL
Activities {
Commodities Port P Port @ Port P to @ Port Q to P
- Dis- : Dis- Sailing | Bailing § Sailing | Sailing
Loading charging Loading charging | loaded | empty | loade empty
Uit Sg(l)‘til-— ip zp Zg g £pg xpQ Zqp TQP
Final: *
Cargo transportation
From P to @ Shiploads . | yre 1
From @ to P permonth | yop 1
Intermediate: *
Net appearances of loaded
shiXs
t P for @ 0 1 -1
At P from @ ] Ships per 0 -1 1
At Q for P month 0 1 -1
At Q from P 0 -1 1
Net appearances of empty
ships
Et ) Ships per 0 -1 1 -1 1
At @Q month 0 -1 1 1 -1
Prz'marf/: *
Availability of shipping Ships 2 —ip —dp —lg —dg —5py —s8pg —3gp —-3gp
Capacity of port Berths zp —kp —mp
Capacity of port @ Berths 2¢ —kq —mg

* For the coneepts final, intermediate, and primary commodities, see Chapter I1I, Section 1.

f In units of ships per month,

[AaTX "avHD
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activities,® “loading cargo” and “discharging cargo,” are defined. For
each route, 1.e., for each ordered pair of ports (in the present case there are
two routes) two activities are defined, “sailing with cargo from P to @,”
and “sailing in ballast (i.e., without cargo) from P to Q.” Each activity
is given by a column of coefficients as in Table 1. If a commodity
(associated with a row in Table I) is not involved in a given aetivity,
the coefficient in that row and column is zero; if the commodity is an
input, its coefficient in the given activity iz negative; if the commodity
is an output of the given activity, its coefficient is positive. The net
output of a commodity by an activity is assumed to be equal to the
coefficient, of that commodity multiplied by the amount (Zs, zp, etc.) of
that activity.

The list of commodities, and the units in whieh ecommodities and
activities are measured, can be read from Table I. 'We may point out
explicitly, however, that the coeflicients indicated by the letters , d, §,
s, appearing in the “shipping” row of Table I have the dimension
“time,” measured in months. Thus Ip denotes the fraction of a month
required to load a ship at port P. Since all activities are measured in
units of “‘ships per month” we have, in the case of the first activity,

(1.1 (#p ships/month)(lp months) = Zplp ships

tied up at any instant of time (more precisely: on the average for a long
period of time) in loading at port P. This is the correct dimension of z,
the total fleet in use. Similarly, the port eapacity coefficients %, m, have
the dimension ‘‘berth-months per ship.”

1.2. Partial reduction of the technology matriz. We shall explore what
vectors of cargo flows are possible in this model, while further simplifying
the model as we go on. Note that we must have

(1.2) Tp, xp, ¥y, T, Trq, Trg, Tor, xgp = 0,

sinee no activity can be carried out ‘“in reverse.” (Sailing empty from
P to Q is not the negative of sailing empty from @ to P because both
activities require the employment of ships.)

Since our model is static, we do not permit accumulation (or decumula-
tion) of stocks of idle ships, loaded or empty, in ports. This is expressed
by requiring all net output flows of intermediate commodities to be zero.
We shall call a set (¥rg, ¥or, 2, 2p, 2¢) of net commodity flows a possible
point in the commodity space if the flows in question can be aceomplished

3 For the concepts “activity” and ‘“‘commodity” see Chapter I1II, Section 14.
Our use of these concepts here implies that we ignore the indivisibility of individual
ships.
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by nonnegative activity levels satisfying this requirement. We note
that, for all possible points,

(1.3) yro, Yor 20, 2, 2p, 29 £ 0,

since the coefficients of final cornmodities in Table I are all nonnegative
and those of primary commodities are all nonpositive.

For some purposes, such as the analysis of what can be done in a
limited period with a given fleet and given port facilities, it is useful to
regard the flows £, zp, 2g of primary commodities as subject to given
capacity limitations,

(1.4a) E= ¢, ¢ <0,
(1.4b) 2 = {p, %9 = (o, ¢py o <0

Any possible point in the commodity space falling within these limita-
tions will be called an attainable point.

Before writing out the net output equations for all commodities, we
shall utilize the equations for the loaded ship appearances to simplify
the technology matrix. These equations are equivalent to

(1.5) Ip = Tpg = TQ; Ty = Igp = 2p.

Each pair of equations (1.5) requires that three activities be carried out
in equal amounts. Since these activities are so tied to one another,
nothing will be changed except the appearance of the technology matrix
if we define one new activity, ‘‘transporting carge from P to Q" to
include unit amounts of “loading at P,” “sailing with cargo from P to
Q,” and “discharging cargo at @,” and if similarly we define another
activity, “transporting cargo from @ to P.”” The coefficients of the new
activities, as given in Table II, are the sums of the corresponding coeffi-
cients of the component activities,

(1.6) lpg = Ip + 3pg 4+ dy, fop = Io 4+ Sgp + dp.

We have thus performed a partial reduction [IT1, Section 3.10] of the
technology matrix, Fach condensation of activities in this reduction
replaces three inequalities of the form z = 0 by one such inequality,
the three z’s being the amounts of the component activities and the
new restrictions, #pg = 0, Zgp = 0, referring to the amounts of the new
activities. Table II gives the partially reduced technology matrix.

As it now stands, the model eontains three primary commodities. If
capacity limits, ¢, {p, (g, on their inflows are introduced by (l.4a),
(1.4b), any of these limits can, and at least one must, constitute an
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Tank IT. Partiarny Repvcep TecevoLoey MaTrix 4 ror o Two-Porr Mobsn

Activities *
Route Pto Q@ | Route @ to P
Commodities
Trans- | o ling | T05° | @oiling
porting ot porting empi
cargo empty CArgo pLy
Unit, Sym-| £ I,
n bol IpQ TPo IQP QP
Final:
Cargo from P to @ Shiploads YPQ 1
Cargo from Q to P per month Yor : 1
Intermediate:
Net appearances of Ships per
empty ships month
At P 0 ~1 -1 1 1
At Q 0 1 1 -1 -1
Primary:
Availability of shipping | Ships Z —tpg | —spg | —fgp | —sop

% In units of ships per month,

effective restriction on the set of aitainable points.* We shall then
simplify our model by assuming that port facilities are known to be so
plentiful relative to shipping that the two restrictions under (1.4b) do
not exclude any point in the commodity space attainable under the
restriction (1.4a).

If, on the other hand, no explicit eapacity limits are introduced, we:
shall still confine ourselves to situations in which supply of the services of
port facilities is no problem. Sinee we are thus no longer interested in
these primary commodities, we have in Table II omitted the port capacity -
rows of Table I. This leaves us with three variables of interest, yzq,
ygp, and 2. Our problem has thus been reduced to finding the possible
point set in the space of these three commodity flows.

4 Bince, a8 is easily seen from Figure 1, Postulates B and Dy of Chapter III, Section
3, are satisfied. See also Lemma 5.8.1 of the same chapter.
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From Table II we obtain the following net output equations:

(1.7a) yrQ = Zpg,

(1.70) YoP = Zop,

(1.7¢) 0=— dpg— wpe+ Zgp+  xzgp,
(1.7d) 0= Epq 1+ tpg— Tor —  Zgp,
(1.7e) 2 = —tpoZpg — Sporrg — lopTor — SQPIQP.

Since (1.7¢) implies (1.7d), we can omit (1.7d) from consideration.?

1.3. Leg-of-voyage and round-voyege activities. At this point we must
decide on a choice of coordinates in the activity space. One possibility
is to operate in terms of the levels &pg, zpg, Egp, Top of the “elementary”
activities so far introduced while observing the restriction (1.7¢).
Another possibility is to complete the reduction of the technology matrix
by introducing new “composite’” activities, chosen in such a way that
a combination of elementary activities at the levels Zpg, 2pg, Igr, Tor
will at the same time be & combination of the new aetivities (at non-
negative levels) if and only if the restriction (1.7¢) is satisfied. We can
then operate with nonnegative combinations of the new activities with-
out further restraints,

When dpg, apg, dgr, dge are written for the column vectors of coeffi-~
cients in the technology matrix A of Table II, such a new set of activities
is defined by

(18) agy = dpg 1 agp, a(2) = dpg 1 agp, a4y = apg + dgep,

a4y = apq + agp-

These activities represent the four different types of round voyages de-
seribed in Table 1II. The unit of each of these activities is a rate of
flow of one ship per month on the round voyage in question.®

& The two restrictions (1.7¢) and {1.7d) are equivalent because we have a elosed
model with no activities that introduce or remove ships: one intermediate commodity
row in Table II is the negative of the other. For that reason, for any constant levels
of the activities, net appearances at port P are equal to the negative of net appear-
ances at port §. Bince, in addition: to requiring constant levels of all activities, our
model classifies empty ship appearances as intermediate commodities, and thus
prohibits accumulation (or decumulation) of ship inventories at any port, net appear-
ances at both ports are required to be zero, and the two conditions expressing this
are dependent.

¢ The use of round-voyage coordinates instead of leg-of-voyage coordinates corre-
sponds to the use of loop currents instead of branch currents in the analysis of elec-
trical networks. See Electric Circuits [1943], pp. 124-133. In Section 2.11 below
we discuss the analogy with electrical networks further.
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TasLe III. ComprETELY REDUCED TrECcHENOLOGY MaTRIx A For 4 Two-Porr

MopEL
Activities *
Trans- Bailing
Trans- I’ oty P Saill
Commodities porting porung empty ing
cargo P | to @, empty
| eargo ’
to Q, returning both
both : .
‘ returning with ways
ways :
empty cargo
. Sym-
Unit ll)rol a1 Ta 73 4
Final:
Cargo from | Ship- YPQ 1 i
PtoQ loads
per
month
Cargo from yop 1 1
Qto P
Primary: .
Shipping Ships Z  |—ipg — lop| —trq — sqr| —srg — lgp| —spg — sgp

* In units of ships per month,

Since each new activity, regarded as a combiration of the elementary
“leg-of-voyage’ activities, satisfies (1.7¢), any eombination of the new
activities does. It follows further from (1.8) that any ecombination of
the new activities with nonnegative levels, z,, 5, z3, 4, say, is a com-
bination of the old activities with the nonnegative levels given by
(1.9) CEre =T b, apg=1x3t mi,  Fop = 21+ 2

’ Top = X3 + 4.

Conversely, for each set of nonnegative levels of the leg-of-voyage
activities satisfying (1.7¢) we can select nonnegative levels, z;, 2, s,
x4, of the round-voyage activities satisfying (1.9). One choice is given by

1 =3%gp, Tz=2=Ipg—Fgp, X3 =10, T4= Tpg

if Zpg = Fgr;

(1.10) ¢ =
T =2%pg, %2=0, x3=>32p —%rg, Ta=agr

if Zop = Ipg.
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In general, additional choices of the levels of the round-voyage activities
can be derived from (1.10) by the transformation

.’ET=:.E3+3, x§=m2“’51
(1.10a)

Ll *

T3 =3 — 9, :r:4=:c4+6,

with such values of 8 = 0, if any, that the levels 3, - - - , remain non-
negative. The transformation (1.10a) consists in a trivial reshuffing
of leg-of-voyage activities between ships in making up complete round
vOyages.

The vectors a(), - - - , defining the round-voyage activities, constitute
the completely reduced technology matrix, A4, shown in Table III
They are frame vectors of the cone of all possible points in the space of
the commodities ypg, Yop, £, agshown in Figure 1. (The term “possible”
is used here in the meaning given to it in Chapter III, Section 4.1, i.e.,
possible without regard to availability limits on shipping or port capaci-
ties but under the restriction that ghips circulate in a stationary flow
pattern.)

In the case of n ports the number of round-voyage activities, a, - - -,
becomes large more quickly; with increasing n, than the number of leg-of-
voyage activities, dpg, * - . Accordingly, the degree of indeterminacy
in their levels, z1, - -+ , for given possible commodity flows, yeg, - - - ,
3, increases. Nevertheless it would seem that, for the purpose of specify-
ing the entire possible point set, and its entire subset of efficient points
(as defined below), the round-voyage coordinates, z;, -+ , are the
proper ones to use. It would then be necessary to select those round-
voyage activities, a), associated with frame vectors and, from these,
select the subsets that can occur gimultaneously in an efficient activity
combination.

We have found leg-of-voyage ecordinates, Zpg, - - - , more useful, in the
n-port case, to treat the more limited problem of deriving local properties
of the efficient point set (i.e., properties in the neighborhood of one effi-
cient point, as defined below). For this reason, in preparation for the
n-port case, we shall in the present two-port case demonstrate the analy-
sis of the efficient point set in terms of leg-of-voyage coordinates. It
may be added that in dynamic models round-voyage coordinates lose
their usefulness, whereas leg-of-voyage coordinates, properly dated, re-
main appropriate.

1.4. Possible points and efficient points in the commodity space. Equa-
tions (1.7a—e), in which the activity levels, Zpg, - - - , are restricted to
nonnegative values, define the set of (fechnologically) possible points in
the space of the commodity flows (ypg, yge, 2). It follows from the
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analysis of Section 1.3 that this set is a convex polyhedral cone (4)
spanned by the vectors aq), @), @), @w), 88 shown in Figure 1. In
preparation for the analysis of the n-port model, we shall obtain the
same result in leg-of-voyage coordinates.

Ficure 1—The possible cone in a two-port model.  (Note: 0zwy = spo + sgr.)

For the purposes of the present analysis, a possible point @ = (ypg,
Yop, 2p) is called efficient (without reference to the availability limit ¢
on shipping) if —2; represents the minimum amount of shipping required
to carry out the program ¥ = (ypg, yop), i.e., if there exists no possible
point (ypg, yop, 2) With —2 < —2,. This is an asymmetric definition,
logically different from the definition adopted in Chapter 111, Section 4.2.
According to the latter definition, & point @ = (ypg, yer, %) would be
called efficient if there existed no possible point a* = (yfq, ¥or, 2*) such
that

(1.12) Yho ZyPe,  Yor Z e, B2 I,

except the point a* = a itself. This says that, starting from an efficient
point, no commodity flow can be increased (algebraically) without de-
creasing another commodity flow.

We shall show below that these two definitions, logically different, are
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equivalent under the assumptions of the present model. For that reason
we can afford to utilize the former, asymmetric, definition in analyzing
the efficient point set in Figure 1. For reasons of exposition we shall
present this analysis independently of the general theary [I11], referring
to the theorems from which our results follow only after they have been
obtained.

We shall therefore address ourselves to the following question: Given
a program, ¥ = (Ypg, Yor), what is the maximum value, 2 = Z,, of the
nonpositive variable 2 such that (y, ) = (ypg, ¥op, 2) is 8 possible point?
The answer to this question will also help us to delineate the possible
point set without using round-voyage coordinates.

We simplify the equations (1.7a—) that define the possible point set,
by eliminating £pg and £5p. This leaves us with the system

(1.12a) 0= —ypo— apo+ wor+ z0p,
(1.12b) —% = ipqypq + sporpg + forYor + Sgpror,
(1.12¢)  ype 20, wYor20, 2pg20, 2prz0,
where it is known that

(1.13) trg > spe >0,  igp > sgp > 0,

because of the definitions of tﬁe quantities involved.
From the given program y = (ypg, yor) we obtain

(1.14) Tpg — Tgp = Yop — Ypg = 4 given number.

Starting with any set of values zpg, xgp satisfying (1.14), we see readily
that (1.14) is preserved if we diminish both zpg and zgp by the same
amount.” Henee, in view of (1.13), Z is maximized by diminishing zpg
and xgp by the largest amount that docs not violate (1.12¢). We dis-
tinguish two cases.

Case 1: yop — yrg = 0. Then efficiency requires

{1.15) zgp = 0, and hence Ipg = Ygp — Ypg = 0.
Substituting this in (1.12b) we obtain, with reference also to (1.12¢),

(L16) —Zy = (tpg ~ sp@)ypq -+ (gr -+ sPQ)yor

when  yop —ypg 20, yre =0,

a set of conditions defining what in anticipation we shall eall facet I
of the efficient point set.

7 This diminution is a simple case of what will be called & circular transformation
in Seetion 2.4.



232 T. C. KOOPMANS AND S. REITER [PART 11

The economic meaning of the foregoing reasoning is obvious and
trivial. If the traffic with ecargo from Q to P exceeds that in the opposite
direction, the most efficient routing of ships in a continuing program
requires the excess of shipping arising at P to be moved back in ballast
to fill the deficit at €, with no other movements in ballast taking place
(xgp = 0). Moreover, since it is always possible under (1.14) to waste
tonnage by adding equal positive amounts to 2pg and zgp, we find that
in Case I all points (ypg, yor, Z) satisfying
w1 —2 = (lpq — spelyrq + (tor + sPolyep,

yop —yrpe =0, yre 20
are possible points.

Case II: yop — ypg = 0. Now efficiency requires

{1.18) xzpg = 0, and hence zop = Ypg — Yop = 0.

We must send 2 number of empty ships from § to PP just sufficient to
permit carrying out the transportation program. Sending empty ships
from P to @ would, obviously, be inefficient. Substituting in (1.12b),
we obtain '

(1.19) —2 = (tpg + sgr)ype + (tor — sgrp)ygr

when yop —yre =0, ¥or 20,

which defines what we shall call facet II of the efficient point set. More-
over, all points (ypg, yor, £) satisfying
—2 2 (lpg + ser)yrq + (top — sop)
(1.20) (tpq + sqriyrq + (o QP )YOP;
e =0, yor20
are possible.

We shall now demonstrate how the conditions (1.17) and (1.20) enable
us to visualize the efficient facets I and II in relation to the entire possible
point set. At the same time we shall show that facets I and II together
constitute the entire efficient point set, also by the symmetric definition
(1.11).

We note that the Cases I and II considered above exhaust all possi-
bilities for the two nonnegative variables ypg and ygp. Since (1.16)
and (1.19) represent minimum wvalues of —2 for given values of ypg,
yop, it follows that all possible points satisfy either (1.17) or (1.20),
and some satisfy both conditions. Moreover, in Case I, (1.17) implies
the first condition (1.20) because then
(1.21) (tre — sPQ)urq + (tor + sro)ver — (trq + sor)yre

— (tor — spolyor = (spq + sgp)(—yre + ¥or) 2 0.
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Similarly, in Case II, (1.20) imphes the first condition (1.17). It follows
that the possible point set is fully deseribed by the following four
inequalities:

ypq 2 0,  yor 2 0,

(1.22) 0 = (tpg — spo)yrg + (lor + spo)yer + 3,
0 = (tpq + ser)yrg + (top — sop)yor =+ 2.

The possible point set is therefore an intersection of halfspaces, each
having the origin in its boundary, henece a convex polyhedral cone.
Since possible points can be found in the boundary of each of these
halfspaces, the cone as shown in Figure 1 has four two-dimensional facets,
of which two fall in coordinate planes. The remaining two facets, I
and II, constitute the set of efficient points by either definition, asym-
metric or symmetrie, because by (1.13) all coefficients in the last two
inequalities (1.22) are positive. Hence, if (1.16) or (1.19) holds in a
point @ = (ypg, ¥or, Z0) an increase in any one or more of the coordinates
of a destroys the possibility of that point. On the other hand, any
possible point @ not satisfying (1.16) or (1.19) permits some increase to
its 2-coordinate, say, without destroying its possibility,

We note that the present analysis in leg-of-voyage coordinates has
led us to a characterization of the possible cone as an intersection of
halfspaces, while the analysis of Section 1.3 in round-voyage coordinates
has led us to an equivalent characterization as a convex hull of halflines,
{@y), *++ , (aw). This equivalence iz discussed more generally by
Gale [XVTI].

1.5. The efficient point sel as a transformation function. The conditions
for efficiency can be summarized in the statement that it is inefficient for
ballast traffic in both directions to be positive. Therefore

(1.23) either zpg =0 or zgp = 0.

Thus, facet I of the efficient point set [less the halfline (a(;,) common to
both facets] may be characterized as the set of efficient points for which
zpg > 0, and hence xgp = 0. Similarly, facet II [less the halfline (ag,)]
can be characterized as the set of efficient points for which zgp > 0,
and hence zpg = 0. Thus, to anticipate a bit, an efficient facet may be
identified with the empty shipping route(s) in use for all points on the
relative interior [III, Section 2.4; XVIII, Definition 31] of that facet.
We also observe that the efficient point set in Figure 1 represents a
transformation funetion (production function) defined everywhere in the
range of its variables and expressed, for instance, as the minimum ship-
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ping requirements,
(1.24) —2% = min (—2) = f({yrq, ¥or),
of a given program. The derivatives of this function and the ratio

thereof,
839 02 =) %o
(1.25) ) ; / 3
Yre dyer dyer/ dypg

where they exist, represent the marginal cost, in terms of shipping em-
ployed, of a unit increase in the program items ypg and ygp, respectively,
and the marginal rate of substitution expressing the opportunity cost of
a unit increase in ygp in terms of a compensating decrease in ypg. On
facet T the marginal rates of substitution (1.25) take the values

(1.26) fpg — spg,  iop + spg, {top + spQ)/(lrq — sPg)-

Thus the marginal cost of transporting an additional shipload per month
from @ to P on facet I, in the proper units, is given by

A%, (lgp + spq) ships
Ayop 1 ship per month

(1.27) = {{op -+ spg) months,
where A denotes corresponding finite increments in the variable following
it. This marginal cost coefficient equals the full turn-around time of a
ghip returning empty because on facet I the preponderant cargo move-
ment is in the direction ygp (i.e., the direction in which loaded traffic
is being increased). No return loads are available for the additional
ghips, and the time cost of their return trip must be charged to the incre-
ment in outgoing cargo movements.

On the other hand, the cost of transporting an additional shipload
monthly from P to ¢ on facet I is

Az (ipq — spg) ships

{1.28) == -
Aypg 1 ship per month

= (tpg — Spg) months.

This is the time cost of reallocating a ship from sailing in ballast from
P to Q to transporting cargo from P to . We may regard ipg in (1.28)
or tgp in (1.27) as the direct cost of the additional transportation commit-
ment, occasioned by the operations with cargo, and —spg in (1.28) or
spg in (1.27) as its indirect cost, occasioned by the change in location of
the ship resulting from its loaded movement.

Similarly, on facet 1T, the rates of substitution (1.24) are

(1.29) teq+ sop, fop —Sgp,  (for — sgp)/(trq + sre)-

The marginal rates of substitution, {1.26) and (1.29), are applicable both
to finile increases and finite decremses in cargo flows, within the facet in
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question. In particular, the marginal cost coefficient for an increase in
the preponderant cargo flow (ygp in Case 1) applies to indefinitely large
increases as long as we rule out port congestion. The marginal cost
coefficient for a decrease in the lesser cargo flow (ypg in Case I) applies
until that flow is reduced to zero and is therefore restricted in its appli-
cability only by the feasibility limit (Aypg = —ypg in Case I) to the
decrease in question. The marginal cost coefficient for an inerease in
the lesser flow, and for a decrease in the preponderant flow, are subject to
applicability limits that are reached at the relative boundary {II1, Section
2.4; XIX, Definition 32] of the facet in question, where the two cargo
flows have become equal. From a point, ypg = ygp, on the halfline
(aq1y) common to facets I and II, the marginal cost of a unit increase
in one of the cargo flows exeeeds the marginal saving from a unit de-
crease in that flow. '

1.6. Efficiency prices. Although the foregoing analysis is complete
for the two-port model, it may be useful to indicate an equivalent char-
acterization of the cfficient point set which will be helpful in analyzing
the n-port model. The coefficients of ypg, vor, 2 in equation (1.16)
of facet T are the coordinates

(1.30) prq =1l —spq, pPop=lopt+ spe, P2=1,

of a vector p normal to that facet. They have been interpreted as effi-
ciency prices [I1I, Sections 4.7, 5.12] associated with each efficient point
of facet I. It has been proved generally for linear models of produetion
such as those considered here (III, Theorems 4.3, 5,11} that a possible
point @ in the commodity space is efficient if and only if there exists an
associated price vector p {(subject to certain sign restrictions on its com-
ponents) such that each activity in the technology has a nonpositive
profitability, while each activity engaged in, in order to realize the com-

modity flow vector @ = >°; a)2s, has a zero profitability
a ‘auy =0 forall k

(131) {( ) p' (k) ‘ ’
1)) Pam = 0 if x>0

The sign restrictions relevant to the present case are that p shall have
positive components for all desired (final or primary) commodities, i.e.,
all commodities entering in the definition of efficiency, and represented
in our case by the flows ypg, yor, 2:

(1.32) prq >0, pep>0, p.>0.

No sign restriction is involved for the prices of intermediate commaodities,
here represented by the flows yp and yg. - In the presence of intermediate
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commodities with net flows restricted to zero, the criterion stated as
applied to the original technology is equivalent to that applied to the
reduced technology from which intermediate commodities have been
eliminated [III, Theorem 5.11).

In the present example, it is most easily verified from the reduced
matrix in Table 1IT that eonditions (1.31) and (1.32) indeed admit all
points, a, of facets I and 1I, and no other points. The vector p of ¢ffi-
ciency prices defines a halfspace, p'a* = 0, containing all possible points,
a*, and having the efficient point @ in its bounding piane. This bound-
ing plane necessarily contains the facet having a in its relative interior.?
If normalized by

(133) . Pz = ]_,

the vector p is therefore uniquely determined, at the same value (1.30),
for all points, a, of the relative intertor of facet I. Similarly it uniquely
equals

(1349)  pro=1lpq+sgr, Dpop =lgp —Sep, P:=1

on all relative interior points, e, of facet II. It is not uniquely deter-
mined at any point ¢ of the common relative boundary of two two-
dimensional facets, but may be given the value specific to either facet,
or a positive linear combination of these two values [subject to the sign
restriction (2.32) which enfers when one of the two facets is not an effi-
cient faeet]. Thus the efficiency prices define marginal rates of sub-
stitution wherever they are uniquely determined.

1.7. The efficiency price on the location of ship appearances. The
equivalent applieation of eriteria (1.31) and (1.32} to the technology
matrix of Table 1I leads to the determination of efficiency prices on the
intermediate commodities (ship appearances) which will play an impor-
tant role in the n-port model. On the relative interior of facet I, where
we have

(1.35) ZIpg > 0, zpg > 0, Eop > 0, zgp = 0,
the conditions (1.31) now become
prg — pp -+ po — trg = 0,
—pp +pe —spg =0,
Per +pr — P —lgp =0,
PP — po —sep = 0.

(1.36)

¥ The definition of relative interior referred to above implies that the facet having
¢ in its relative interior is the facet spanned by those vectors agy for which zx > 0in
(1.31). Bee Gerstenhaber [XVIIE, Theorem 1].
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These conditions are solved, within the sign restrictions (1.32) and sub-
jeet to the normalization (1.33), by (1.30) and by any pg, pg such that

(1.37) Po = pp T spq.

We note that the efficiency prices, pp and pg, of ship appearances in
P and @ permit the following general expressions for the marginal cost
coefficient for an increase in a cargo flow. From (1.26) and (1.37) we
derive :

AZy

Ay .
(1.38) T trg -+ PP — Do,

= tgp + Po — PP
YPQ Ayopr

for finite variations within facet I. Since these expressions are sym-
metrical in the two ports, they apply also to finite variations within
facet Il if we remember that on that facet we must replace (1.37) by

(1.39) Pp = Pg T Sgp-

By (1.38) the indirect cost of an increase in a transportation commitment
by one shipload a month, accomplishable within any one efficient facet,
is found to equal the decrease in the efficiency price attached to the
location of a ship, resulting from the change in location required by the
fulfilment of the new transportation commitment. For that reason the
prices pp and pg bave also been called the economic potential of the loca-
tion of a ship in P and @, respectively.®

1.8. Efficient poinds under capacity resirictions. In the foregoing
analysis the input —2 of shipping hag been regarded as a variable enter-
ing into the definition (1.11) of efficiency. Alternatively, in the defini-
tion of efficiency, the third condition (1.11) can be replaced by the
requirement that both the would-be efficient point ¢ and the possible
point a* be attainable, i.e., satisfy the capacity restriction (1.4a) arising
from a given size of fleet. In this case the attainable point set is the
pyramid 044,434, indicated by Figure 2a, and the efficient point set
consists of the two line segments 4,45 and 4,43. Figure 2b gives the
corresponding attainable (04,4,4;) and efficient (4,4, and A,A3)
point sets in the two-dimensional “program space” of the variables
Yrq, Yor-

The foregoing analysis of efficiency prices remains valid in the present
case, provided that the assumption that the limits to port eapacities are
never reached is maintained. The only difference is that efficiency now
requires that the quantity Z;, previously a freely choosable nonpositive

® The reader may wish to exercise himself in the application of this concept to
models with three or four ports.
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variable, now equals the given constant ¢. Therefore the interpretation
of efficiency prices, when unique, as marginal rates of substitution in
efficient operation now applies only to offsetting variations in ypg and
yop. Kurther interpretations of the efficiency prices are given in the
n-port case in Sections 2.8, 2.9, and 2.10.

If port capacities {p, {¢ actually restrict the attainable point set by
(1.4b), the foregoing analysis of efficiency prices applies only in those
efficient points (if any) in which neither of the equality signs in (1.4b)

A
0 o8 Yor
Yapr
4,
Ay
Yrq
Figure 2a Figure 2b

applies. If one or both equality signs in (1.4b) apply in an efficient
point, the efficiency prices associated with such a point, if unique, con-
tain allowances for rent arising from the use of scarce port facilities.

2. A MopeL wrte n Ports

2.1. The routing of emply ships. A generalization to n ports of the
technology matrix of Table II is given in Table IV. This table contains
a cargo transportation activity and an empty sailing activity for each
route (i.e., for each ordered pair of ports). The units of measurement of
activities and commodities have been changed to correspond to an
example described in Section 2.2 below. _

As in the two-port ease, we begin by assuming a desired transportation
program. Let us treat this program as if it were given to a central
shipping authority whose job it is to perform the indicated transporta-
tion, unchanged from month to month, at minimum cost in ‘terms of
shipping continually in use.

The given transportation program will determine the levels of all
activities relating to the movement of cargo. This leaves the shipping
authority free to choose only the levels of activities involving movements
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Activities *

Commodities Transporting carge Bgiling empty
from I from I from 1 from 2 from 2 from n from | from { from 1 from n
to 2 to 8 e ton to 8 v tonm o~ 1 to 2 to & e ton ton — 1
TUnit Symbol 13 E13 vor Zin £ Zag Enitne1) 12 T13 T1n Znaln —1)
Finol:
Cargo transported .
From 1 to 2 1 million | 2 1
From I to 8 tons of V13 1
v CATEO per o
From 1 to n month Yin 1
From £ to I Y1 1
From 2 to 8 Y23 1
Fromnton — 1 Ynotn =13 1
Intermediate:
Net appearances
of empty ships
At 1 million 0 -1 -1 -1 1 -1 -1 -1
At 2 tons of 0 1 w1 -1 1
At 8 cargo- 0 1 1 1
res carrying ves
Atn — 1 capacity 0 1 1
Atn permonth | 0 1 =1 1 -1
Primary; -
Bhipping 1 million | 2 —fz —Us ~{n —fny(n-1) =812  ~818 —3ni(n—~1)
tons of
cargo-
carrying
capacity

* In millions of tons of cargo or vargo carrying eapacity per month.
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of empty ships. Thus the problem of finding the efficient point corre-
sponding to a given transportation program is equivalent to finding a
routing plan for empty ships such that the total cost of the given pro-
gram, in terms of shipping in use, is minimized.

These statements, obvious in themselves, are verified if we write the
net output equations associated with the technology matrix of Table IV
in the matrix form

y I 07 __
x
2.1) e=|0l=| B B L]EAi y=0, &=0).
- S

From the first set of rows we find the loaded movements & determined
by the program ¥,

(2.2) y=I% =g

We further read from the last (single) row

(2.3) 5=2z+4+2z with Z=—ti=—1ly, 2= —¢z

where, analogous to (1.13), we have

(2.4) t>s>0.

We thus find that, in order to minimize shipping employed, —2, in a
given program, ¥, we must minimize shipping employed in empty move-
ments, —z, by proper choice of the routing plan z so as to balance the
loaded movements £ To achieve this balancing x must satisfy the
restrictions

{2.5) Bz +b=0, with b= Bji

following from the second set of rows in (2.1).

The matrix B, a submatrix of the given technology matrix 4, is found
by reference to Table IV. To visualize the conditions (2.5), it will be
useful to write them equivalently in indicial form,

n n
2; 20, D my— X, &= by
j=1 =1

26 A
where by = 2 & — 2 &, (=1 --,n).

i=1 j=1
(It is convenient here to think of z,;, Z;; as equal to zero for all 7, and not
represented in the vectors x, £.) The elements of b defined in (2.6) are

1 We employ the notations for inequalities between vectors introduced in Chapter
II1, Section 2.5.
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the net surpluses of empty ships arising in the various ports from the
performance of loaded movements. These are actual surpluses in all
ports receiving more shiploads than they dispatch, deficits in all ports
in the reverse situation. Because the net surpluses are generated by
loaded movements, and because our model of shipping technology dis-
regards ship losses at sea, the sum of all net surpluses vanishes, as is
easily verified directly from (2.6), If

2.7) | e=[1 1 - 1]

is a row veetor with all its n elements equal to 1, the remark just made is
expressed by the property

(2.8) B =10
of the matrix I* B, which through (2.5) leads to
(2.9) b= b; =0

From the nature of our problem it is intuitively obvious that for every

program y there exists at least one routing plan x that minimizes shipping
employed in empty movements. To argue this point mathematically,
we note first that every program y is possible (ie., can be performed if
enough shipping —# is available and port capacities are unlimited), A
particular routing plan which is always available 12 is
(210) x5 = Fj 80 —z = 12; 8485 = ;J Siile = —#p, Say.
This routing plan consists in returning all ships empty by the routes re-
verse to those traveled with cargo. Although in general this routing
plan will be inefficient, it permits us to remark that, if we do not have,
forall 7, j, 1 # j,

(211 Zi; £ —20/8;, where® 0 < —z/8; < 0,

the function —z = &'z will exceed the value —zg reached in (2.10). For
the purpose of finding the minimum of the linear function s’z subject to
the restrictions (2.5), therefore, we can confine » to the elosed and
bounded convex polyhedral set S given by (2.5) and (2.11), We state
without proof that on such a set s linear function reaches a minimum.

1 Jt may be noted that B is of rank n — 1 and can by permutation of columns be
given the form [—C €. It follows that b is subject to no other restrictions than
(2.9), even though Z is restricted to be nonnegative.

2 Another type of ‘“feasible solution” is employed by Dantzig [XXIII] as initial
value in an iterative method to find an optimal =z.

13 Using (2.4) and excluding the trivial case y = 0, 2g = 0, where z = 0 minimizes
—z
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Taere V. Nrr Recerers or Dry Carco in Overseas Trape, 1013 *

Monthly
Dis- Annual Average
Representa- | Received | patched Net of
Area tive Apnually, | Annu- Receints Anmual
Port, 122y ally, elcg;f ' Net
1 123 i ' | Receipts,
) b
Baltic eountries, Norway,
Germany,Netherlands,
Belgium,Great Britain,
and Ireland Rotterdam 151.30 156.72 | — 5.42 | —0.48
France, Spain, and
Portugal Lisbon 38.48 23.62 14.85 1.24
Meditcrranean, except
France, Spain, and
Portugal Athens 32.42 13.86 18.56 1.55
Black Sea countries Odessa 1.70 13.25 | —11.55 | —0.96
West Africa Lagos 2.76 1.34 1.42 0.12
South and East Africa | Durban 2.93 1.77 1.16 | 0.10
Arabia, Iran, and India | Bombay 6.49 9,95 — 3.46 | —0.29
Malaya, Siam, Indochina,
Philippines, and Indo-
uesia, Singapore 4.75 4.93| —0.18| —0.02
Japan, China, and
Asiatic Russia Yokohama 5.39 3.35 2.04 0.17
Australia and New
Zealand Sydoey 3.37 6.30 | —2.93 | —0.24
Pacific Coast of United
States and Canada SBan Francisco 2.60 2.87 0.23 0.02
Atlantic and Gulf Coast
of United States and
Canada New York 12.78 28.18 | —15.40 | —1.28
Mexico, Caribbean,
North Coast of South
America, and Brazil St. Thomas 12.04 7.80 4.24 0.35
Remainder of South
America La Plata 12.26 15.82 | — 3.56 | —0.30
Total 289.27 | 289.27 0.00 0.00

* Source: Der Giterverkehr der Weltachiffahrt, Statistinches Reichsamt, Berlin, 1928, Al figures are

in millions of inetric tons.
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This minimum may be reached in a single point, z, or in all peints of a
closed and convex polyhedral set, S.;.. No local minima higher than
this absolute minimum can exist because of the convexity of S. For
proofs of these statements we refer to Chapter II1, Sections 5.6, 5.8.

2.2. An example with dala for 1913. We shall employ an example
constructed from data showing world movements of dry eargo in 1913.
Table V gives the computation of the net surplus vector b from the given
program. Although the data represent shipments between areas, we
shall assume for simplicity that the entire traffic of an area goes through
its representative port. The sailing times, s;, defined on that basis can
be derived from Table VI. Assuming that a ship in ballast (allowing

Tagre VI. DisTanceEs BETWEEN REPRESENTATIVE PORTS *

Yoko- San St

Lisbon {Athens| Lages | Durban bama | Francisco |Thomas

Rotterdam 1.1

Odessa 0.7

Bombay 5.2 3.7 8.1 4.1 5.4 9.8 8.3
Singapore 7.2 5.7 9.0 4.9 2.9 7.3 10.2
Sydney 10.6 9.0 12.7 6.2 4.3 6.4 8.8
New York 3.0 4.8 4.9 9.7 5.2 1.4
Ly Plata 5.3 7.1 4.3 4.6 13.2 8.7 4.6

# All figures are in 1,000 nauiica) miles. Assuming vessel apeeds in ballast (with allowance for time
spent fueling) to correspond to 5,000 nautical miles per month, the coefficients &:; are found by dividing
the figures in this table by 5.

for time spent in refueling) sails 5,000 nautical miles in one month, the
coefficients s;; are obtained by dividing the figures in Table VI by 5.
Furthermore, while the data were actually generated in a market situa-
tion, we shall assume them to be given to our hypothetical central ship-
ping authority as the desired transportation program. Finally, we
proceed as if these numbers represented constant rates of flow through
time.

The unit of cargo flows is a million tons per month. The unit of flows
of shipping, loaded or empty, is the flow of ships that if loaded would
carry a unit flow of cargo. In this choiee of ynits, we have disregarded
the slight dependence of a ship’s carrying capacity on the length of the
loaded voyage, arising from the necessity to carry fuel.

1 A gimilar example based on data for 1925 is contained in Koopmans [1947].
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2.3. Possible graphs of empty shipping roules. Any vector z satisfying
(2.6), and hence representing a possible routing plan for empty ships in
relation to the program ¥, defines a set of routes (z, 7) on which a positive
flow of empty ships, z;; > 0, is prescribed. The figure consisting of all
these routes (as “arcs’) plus all ports in the technology (as “vertices”)
is, according to topological terminology, a linear graph [Koénig, 1936].
It will be ealled the graph G = G(z) of ballast traﬂic associated with the
possible routing plan z.

Map 1 gives a posgible graph of ballast traffic for the program of
Table V. Amounts z;; that satisfy condition (2.6) are indicated along-
side each route, the net surpluses b; with each port.

2.4. Conditions for an efficient graph. A routing plan, z, possible in
relation to a program, y, is called efficient if it minimizes the amount
(2.4) of shipping absorbed in empty movements. A graph, G(z),
associated with an efficient routing plan, z, is likewise called efficient.
A general theorem [III, Theorem 4.3, as extended in Theorem 5.9],
already quoted, states that the existence of a vector p of prices, satis-
fying conditions similar to (1.36) as well as certain sign restrictions, is
necegsary and sufficient for the efficiency of a point (2.1) and, hence, of a
routing plan z in relation to a program y. We shall here establish the
validity of this criterion by reasoning specific to the present transporta-
tion model. The shortest road to that end will be the heuristic explora-
tion of the consequences of conditions (1.36), should they be satisfied at
a point a arising by (2.1} from a routing plan z.

In the present notation, and normalizing by p, = 1, the conditions
(1.36) are, for cargo-carrying activities,

(@ pi—pitpi—t;=0  forall (g ),
®) pi—pitp—ty=0 i £ >0,

and, for empty movements,

(2.12). {

{a) P S pi+ sy forall (3 ),
(b) pi=pits; i ;>0

We shall concern ourselves first with the conditions (2.13) on the p;,
which, as prices of intermediate commodities, are not subject to any
sign restrictions. In Map 2 we shall attempt to determine for all ports
values p; that satisfy the conditions (2.13) corresponding to the graph
Ghg13 of Map 1. Since conditions (2.13) are invariant under addition
of the same constant to all p; we may arbitrarily choose

(2.14), PAthens = 0.

(2.13) {
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Application of (2.13b), with reference to Table VI for the values of s;,
now leads successively to the values of p; in all ports connected with
Athens by a chain of routes,

PLaPlata = PAthens + 142 = 1.42,
PDurban = PLaPlata — 092 = 050,

(2.15)

etc., as exhibited in Map 2. The procedure is formalized as follows.
We shall exclude graphs which contain both a route (I, m) and its

reverse (m, I). Such graphs would in any ease be inefficient. Tet a

chain C contfained in the graph G be defined as a sequence of routes of @,

(216) (7'; j) or (J: "”)J ttty (l: m) or (m} l)y Ty (p: Q’) or (Q', p):
connecting suceessive ports in a sequence,
(217) i:j;"';i)m,"':p:%

of ports, no two of which are the same. This chain is said to lead from
port ¢ to port g¢. With reference to the routes of a given chain, C, we
define %

vo, =1 if (I, m) ¢ C and I precedes m in (2.17),

(2.18) I .
Wy = —1 if (m, 1) e C and m follows [ in (2.17).

Then repéated application of (2.13b) is equivalent to the rule
(2.19) py=1p:+ m;}}g VorSeh, CCq, C leads from 7 to q.

In order to ascertain whether and when this procedure gives determi-
nate p;-values in all ports, we must explore the two possibilities of con-
tradiction and of indeterminacy. To begin with possible contradiction,
let us define a circuit, O, contained in ¢ in 8 manper similar to a chain,
except that we require the first and last port to be the same (¢ = 1),
all other ports fo be different. The notion of a circuit includes the sense
(from left to right) in which the sequence (2.16) (with ¢ = %) is traced,
and constants v, are defined again by (2.18) with reference to that sense.

In a graph that contains no circuits, (2.19) cannot lead to a contradie-
tion, If a graph & contains a cirenit O with successive ports (4, 4, &
.-+, p, 1), contradiction will arise unless

o
i = 0.
(2.20) | (g;)le  PiiSeh

¥

This is easily seen to be also a necessary condition for the efficiency of G.

15 The symbol ¢ denotes “is a route of’; the symbel C, “is contained in.”
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If the left-hand member of (2.20) were negative, a circular transforma-
tion, .
T = Xgh + I-Wp?k if (g, h) € 0:

(2.21) .
Zg = Tgp, on all other routes (g, k),

of the flows of empty shipping, with a positive modulus u, would decrease
the expression (2.4} for the shipping engaged in these movements by the
positive amount

(2.22) §r — s'x* = —u E I'gt,sgh.
(g, ) e O

The meaning of this transformation is that, tracing the circuit in the
sense %, j, k, +++ , p, ¢, an amount g is added to the flow of empty ships
on all routes traced in the direction of that flow and an amount u is
subtracted from the flow on all routes traced in a direction opposite to
that flow. This can always be done within the restriction z* Z 0 by
taking a sufficiently small value of g, since the graph G = G(z) contains
only routes of positive flows 5, -+ - . Similarly, if the left-hand member
of (2.20) were positive, a sufficiently small negative modulus p would
define a possible transformation such that (2.22) is positive. Finally,
by considering each of the four cases (omitting superseripts 0)

©.23) vii=vip =1  wi=wy=—l owy=1, owy =1

v = —1, wp=1;

it is easily seen that, with either sign of u, the transformed routing plan
z* satisfies the restrictions (2.6) for every port j whenever the original
plan z does.

A circuit O = (¢, 4, -+« , 7) contained in a graph @ is called neutral
if (2.20) is satisfied. It is easily seen that, if all circuits contained in a
graph G are neutral, no contradiction can arise in defining p;-values in
all ports. Sinee, in particular, any circuit contained in an efficient graph
is a neutral circuit, no contradiction in the evaluation of p;-values for
all ports by (2.19) can arise if the graph G is indeed efficient.

Indeterminacy of one or more p; can arise if the graph @ is not con-
nected, i.e., if there exists at least one pair of ports ¢, ¢ not connected by a
chain (4, 7, -+ , ¢ in G. We shall come back to this case in Section 2.5,
and we assume here that ¢ is indeed eonnected.

We have thus established that, if @ is a possible and connected graph
containing only neutral circuits (if any), conditions (2.13b) permit a
unique determination of ps-values for all ports from a prescribed value
in one port. We shall prove further that, under these assumptions, con-
ditions (2.13a) are both necessary and sufficient for the efficiency of G.
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To show the necessity, assume that
{2.24) P; > pi t+ sy

for some (7, 7). To illustrate the argument in Map 2, let ¢ = Durban,
j = Bingapore, and assume that s; = 0.92 instead of the value 0.98
following from Table VI. Then, by adding the route (Durban, Singa-
pore) to Gyg13 to make Gyg;3, we give rise to a cireuit (Durban, Singapore,
Yokohama, Sydney, Durban) in Gfy; because Singapore and Durban
are already connected by a chain in @ before the new route is added.
The saving in shipping from a circular transformation on this circuit
with positive modulus u equals, by (2.22) and (2.19),
(2-25) #(sDu. 8i 8Yo, Si + 8Ys, By Sy, Du)

= —u(8pu, 8i + Pou — D),

which, by assumption (2.24), is a positive number. Hence the graph
G115 i not efficient because savings can be secured by sending empty
ships on a route outside it. It should be added that in the reverse
case, :

(226) F 4 < pi + 8iy

no saving can be effected by a negative choice of u because z;; = 0 before
the transformation, and any negative value of p would make zi; < 0,
which is technologically impossible.

To show the sufficiency, assume that (2.13a) holds for the p; deter-
mined from (2.13b). Define a row vector,

(2.27) pp=(p P2 ‘- Pal,

to contain all p;, We can then write (2.13a), which was obtained by
applying (1.31a) to the second set of columns in the technology matrix 4
as partitioned in (2.1), in the form

(2.28) psB — ¢ £ 0.

In particular, from (2.13b), i.e., from (1.31b) applied to A, the equality
sign in (2.28) applies to all components such that the corresponding com-
ponent of z is positive. Since the remaining components of x are zero,
we have

(2.29) (pB — )z = 0.

Now let 2° be any possible routing plan, i.e., any vector 2° = 0 satisfying
(2.5) if z° is substituted for z, giving

(2.30) Bi® = —b = Bz
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Then, since 2° = 0, we have from (2.28)
(2.31) (pEB — ¢')2® = 0.

Comparison of (2.29) and (2.31), using (2.30) after premultiplication by
?’, leads to

(2.32) §2° = o'z

Hence there is no possible routing plan z° employing less shipping than
z, and & is an efficient graph. '

We have thus found that, in the case of a connected graph G, the
existence of a solution p; of (2.13) is by itself a necessary and sufficient
condition for the efficiency of G.

This does not conflict with the theorem mentioned at the beginning
of this section, which includes (2.12) in the eondition. For, if p; satisfies
(2.13), the p;; defined by requiring equality in (2.12) for all routes (3, j),
whether cargo is moved on them or not, will be positive as a consequence
of the inequalities

(233) t,;j > S5 for all (’i, J)

stmilar to (1.13).
A comparison of the pi~values in Map 2 with the s;; as derived from
Table VI establishes that the graph of that map is indeed efficient.

2.5. The case of o disconnected graph. The proof that the existence of o
solution p; of (2.13) is sufficient for the efficiency of a graph G does not
depend on G being connected. The proof of the necessity of that condi-
tion needs to be supplemented for the case of a disconnected graph G. A
disconnected graph is possible only if the set of ports can be partitioned
into two or more subsets such that the net surpluses b; add up to zero
within each subset. This, again, can only happen by “accident,” by
“special” choice of the program vector y. Since we have specified that
all ports belong to any graph of ballast traffic, the case where a certain
port ig neither the origin nor the destination of any route of empty ships
constitutes, and properly so, a special case of a disconnected graph.

As an illustration of a disconnected graph, add 0.9 million tons to the
cargo flow from Durban to Sydney. The graph GJo,5 obtained from that
of Map 1 by deleting the route (Durban, Sydney) is a possible and dis~
connected graph for the modified program y' so obtained. Does the
existence of a solution p; of (2.13) remain a sufficient eriterion for its
efficiency? We shall sketch the reasoning that leads to an affirmative
answer.
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Let us refer to the two connected subgraphs of GJg,; as the Atlantie
and Pacific subgraphs. Values for the p; in all “Atlantic” ports (with
which we include Durban and Bombay) are uniquely determined, by
(2.13b}, from the value (2.14) arbitrarily assumed for Athens. Simi-
larly, ps-values for all “Pacific” ports are expressed by

(234) Vi =A+ ¢ = Pyokohamas

say, and where the g; are uniquely determined by (2.13b). Consider all
routes leading from an “Atlantic” port ¢ to a “Pacific” port 7. For each
such route we read from (2.13a) an inequality,

(2.35) A+ g £ pit s

For each route of the reverse type we have, similarly,

(2.36) At g = po— s

Hence a value of X which satisfies (2.13a) can be found only if

(2.37) ﬁlgﬁ Pi— ¢ — 85 = ?311;:;1 (pi — @ + 855).
jePac jePao

If this is not true, there exist “Atlantic” ports 4, i; and “Pacific” ports
71, j2 such that

(2.38) Pi = @in = Sjiy > Pig — Gz T+ Siggay
and a circuit can be found which eontains the routes (jy, ¢;) and (43, 75)
and on which a circular transformation with positive modulus produces
a saving in shipping employed.

This reasoning can be extended to cover the case of three or more
connected subgraphs, not mutually connected, of a possible graph G.

2.6. Iterative computalion of an efficient graph. The foregoing proof
of the necessity of the conditions (2.13) for the efficiency of a graph @
suggests a method of iterative improvement of a tentative possible initial
graph, ¢;. Such a method is deseribed by Dantzig [XXIII]. The
difference p; — p; is there referred to as the indirect cost of the activity
meagured by z;; and is denoted by ¢;;.

Table VII gives eorresponding notations in Dantzig’s chapter and the
present one. In making the comparisons it should be kept in mind
that the program of commodity inflows and outflows, assumed given
for the various terminals by Dantzig, corresponds to our net surpluses
of shipping at the various ports. His minimum cost transportation pro-
gram of a homogeneous commodity corresponds to our efficient routing
plan of empty ships.
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Tasre VII. Corresronping Norarions in Craprers XXIEI anp XIV

XXII X1V XXIII XIv
Cij 845 ﬂvl,"',(lm_,b}_,"',bn bl;"';bu
Zij i By, 6 such that z; >0
A @ij Tk %ij such that z; >0
z —z vk = Nk + pmky, f Br = Ay |vtm, i Tim >0
€ij Pi—Pi || vk = dmke + gty I Bo= Awr |#mp, U Zmg >0
Uy - € "y Cmgn—1 sy such that =z >0
v Pj '

2.7. Routing plans associated with an efficient graph. So far our atten-
tion has been directed to the graph & of ballast traffic (i.e., the set of
routes for which z;; > 0) rather than to the actual values of the z;;
and the resulting value Z of shipping employed in ballast traffic. We
shall now establish the connection between G and z.

Assume first that @ contains no circuits and is connected, taking as an
example the graph Gig13 of Map 1 in relation to the unchanged program
Y1013 of Table V. Such & graph, known as a tree, uniquely determines
the flows, x;;, of empty ships on all its routes. To show the determina-
tion of the flow of 0.9 million of {empty) cargo-carrying capacity on the
route (Durban, Sydney), delete that route from Gig1z. This recreates
the graph Gly1s previously considered, but this is not a possible graph in
relation to the program gyi9;s. Either of its two trees can be used to
determine uniquely the value ‘

(2'39) Ipy, sy = Z b; = — Z b, = 0.9

ieAt] ie Pae

from a summation of the relations (2.6) over all ports of one tree. H G
is not connected, the same reasoning can be applied to each of its con-
nected subgraphs.

Each circuit contained in a graph G introduces the possibility of a
circular transformation in z, with a modulus limited by a lower and an
upper possibility bound depending on the initial routing plan, z;, say.
Tt can be shown thatl the set of routing plans x compatible with such a
graph G forms a convex polyhedron of a dimensionality equal to the
cyclomatic number of G (i.e., the maximum number of routes that can
be removed from G without disconnecting any pair of ports connected
within @) [Konig, 1936].
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If G is efficient, all its circuits are neutral circuits, and all routing plans
z associated with ¢ lead to the same value, —z, of shipping employed in
ballast traffic, which is the minimum value of —z among all possible
routing plans.

If G is efficient and connected, then (2.13b) uniquely determines the
p;, and what we shall call the mazrimal efficient graph @ is obtained by
adding to G all routes (¢, ) for which the equality sign in (2.13a) holds.
(To obtain the maximal efficient graph G if G is not connected may
require adding two or more routes simultaneously to avoid impossible
graphs.) If G does not contain a circuit, the efficient routing plan «
i3 unique.

Neutral circuits often oceur in practice. Many would be present in
the technology of Table VI if all its eells were filled out, but it so hap-
pened that none entered in the efficient graph of Map 1. Neutral cir-
cuits arise whenever all four routes connecting either of two ports 7, 7
with either of two ports &, ! go past the same geographical point (cape,
Narrow passage).

2.8. The marginal cost of variations in the program. We shall now
show that the efficiency. prices, p;;, on cargo flows, when uniquely deter-
mined by (2.12) and (2.13), define marginal rates of substitution of cargo
flows against shipping. These substitution rates are applicable to all
changes in the program that can be balanced by a change in the effi-
cient routing plan x without causing an essential change in the eorre-
sponding graph & of ballast traffic. '

As an example, consider the addition of g = 0.1 million tons of cargo
to the monthly flow from New York to San Francisco in the 1913 program
of Table V. Since Ghg13 is connected, the route (NY, 8F) can be supple-
mented by routes in Gyg13 to a cireuit (NY — SF — Sy « Du — LP
< Ath — NY), in which the arrows indicate the direction of ballast
traffic on all but the first route. The change in the program ean be
effected, within the restrictions (2.6), by the circular transformation

= - E3
INY,8F = INY,BF + i, TsF, 8y = ZTBF, 8y + u,

% k
(2-40) Tpu, 8y = TDu 8y — M Tty Tath, NY = Tath, NY + g,

z} = z; on all other routes.

Because of the moderate amount of its modulus, x, the graph G{z*) after
this transformation is the same as the original graph, Ghe1s. Since the
efficiency of & possible routing plan depends only on the efficiency of its
graph, it follows that =* is again an efficient routing plan for the changed
program.
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The unit cost of the transformation (2.40) (i.e., the cost divided by
the modulus, u, expressed in terms of additional shipping used) is

(2.41) tnv,sr T SsF,8y — SpDu, sy T -+ Sawm, Ny-

By (2.19) and (2.18), this cost equals

(2.42) INY,sF + PNY — Psr-

On the other hand, this expression equals the efficiency price pyy,ap as
determined by (2.12b) whenever yny,s¢ = Zny,sr > 0 in the original
program, or as permitted by (2.12a} if yyy sp = 0. This establishes the
interpretation of the p;;, when uniquely determined, as marginal cost
coefficients,

(2.43) i = b + i — Dy

The term £;; in (2.43) can be called the direct eost of a unit addition to the
program on the route (¢, 7), the term p; — p; the indirect cost. The in-
direct cost ariges because, on completion of its loaded movement, the ship
ig in a different location and hence has a different locational potential,
The term allowing for this circumstance is the loss in potential (in the
efficiency price of ship appearance) associated with the loaded movement.

Since all relationships involved are linear, the coefficients p:;, if
unique, can also be used to express the simultaneous cost of a number of
program changes Ay;;,

(2.44) —Af = E PeiAYij.
t,J

The validity of this expression is limited to changes in the program which
permit the same potential function p; to apply before and after the
change, with the p;; defined by (2.12b) on all routes. This is certainly
the case if the same efficient graph applies before and after the change.
It remains true in certain boundary cases whenever the efficient graphs
G and G* before and after the change are contained in the same maximal
efficient graph G. It can be shown that all programs y permitting rout-
ing plans = whose graphs are contained in the same maximal efficient
graph G form a closed facet 1® of the efficient point set. The maximum
dimensionality of such a facet is n{n — 1), the number of variables
¥ij, &, less one. This maximum is reached if & is connected, in which
case the efficiency price vector p is uniquely determined in every point
in the relative interior of the facet in question, and represents the normal
to that facet.

* For the concept of a facet, see Chapters III, Section 4.5, and XVIII, Section 4.
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The cost expression (2.44) for a change in the program y within a facet
can be decomposed into direet and indirect cost as follows. If the p;;
are to be unique, conditions (2.12b) must apply to all routes (z, j).
If we write p, for the vector with elements p;; ordered as the y;; in
Table IV, the normalized efficiency price vector p is given by

(2.45) P =Ip, pz 11

In this notation, with reference to the technology matrix A as parti-
tioned in (2.1}, conditions (2.12b) for all routes can be written as

: I

(2.46) p, p» 1| B |=p +psB—t =0,
— t’

and hence, from (2.41),

(2.47) — Az = {'Ay — ppBAY.

In this expression, in view of (2.2) and (2.5),
(2.48) BAy = BAZ = Ab

represents the vector of changes in net shipping surpluses b; in the
various ports, resulting from the change Ay in the program. Substitut-
ing (2.48) in (2.47), we find that the cost,

(2.49) ~AZ = {'Ay — ppAb = 3 LAy — 2 pilby,
% 7 F3

of a change in the program within an n(r — 1)-dimensional closed facet
of the efficient point set is the sum of a direct cost, 3 t;;Ay;;, representing
the net inerease in shipping employed in cargo-transporting activities,
and an indirect cost, — 2 p;Ab,, representing the net increase in shipping
efficiently employed in empty movements. The latter cost can be ob-
tained, without traeing the changes Az;; in flows of empty ships on indi-
vidual routes, as the negative of the sum of the changes Ab; in the net
shipping surpluses, each multiplied by the economic potential, p;, of
# ship in the loeation of that surplus.”

2.9. Uses of the efficiency prices by a ceniral shipping authority. In a
pool of shipping administered by a central authority, such as existed
in the first and second world wars, an efficient routing plan z and a set
of efficiency prices p corresponding to a program y can become known
to that authority only by explicit eomputations based on the performance

17 Because of (2.9), the expression (2.49) is not affected by the addition of a constant
to the potential function p;.
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times f;;, 8;;. Once computed, the prices p;; can be used to assess the
opportunity cost of the acceptance of one transportation commitment,
in terms of other commitments that have to be rejected, if the total
amotint of shipping available for active operations ® is limited. Where
two possible commitments are not competitive but substitutes, such as
when the same raw material can be obtained from tv:ro different sources
of supply or when the location of a raw material processing activity is
to be selected, calculations based on the prices p;; are needed to arrive
at the best solution. It should be emphasized again that these uses are
subject to all the limitations of the present analysis. They apply to
the comparison of alternative programs, each constant over time and
both compatible with the same efficient graph G(r). They therefore do
not analyze the cost of transition in time from one constant program to
another. These and many other problems in the centralized operations
of a pool of shipping can only be approached by dynamic generalizations
of the foregoing theory.

2.10. Efficiency prices as market prices under competition. The condi-
tions (2.12) and (2.13) would also be fulfilled, with proper interpretation,
by freight rates p;; formed in a competitive market in which the composi-
tion of demand for transportation serviees on the various routes is stable
and in which shipowners independently bid for and carry out transporta-
tion commitments, whenever necessary moving their ships empty to a
riaore advantageous position for the fulfilment of the next commitment.
Of course, market freight rates also contain allowances for the cost of
other scarce factors besides shipping, represented by such things as port
and canal dues, allowance for accumulating repair needs, wages of crews
and stevedores, cost of fuel and supplies. To keep matters simple, let us
assume that all factors other than the use of shipping can be bought at
constant prices in any desired quantities. Then we may add one row
to the technology matrix, stating for each route the money cost of the
amounts of these factors required for the unit of each activity. The
cornmodity flow corresponding to this new row is money input, and the
efficiency price can conveniently be taken equal to unity so as to express
all other efficiency prieces in money terms.

In a model for long-run analysis it would be appropriate to treat the
cost of the use of shipping in the same manner by making an overhead
charge, imcluding depreciation and interest, based on the money cost of
ship construction. However, since adjustment in the size of the world
merchant shipping fleet is much slower than the fluctuations in demand-

18 That is, the fotal fleet in existence less an allowance for ships in repair or over-
hauling,
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at-constant-price for its services, it is also of interest, in an analysis which
is neither too long-run nor too short-run in character, to consider tem-
porarily constant demand schedules on all routes in conjunction with a
temporarily constant size of the fleet, which is not necessarily in long-
run equilibrium with these demand schedules.

In this case, the row in the technology matrix corresponding to input
2 of shipping should be retained and the efficiency price p, on the use of
shipping be interpreted as a “rental charge’ for the use of one unit of
shipping during one unit of time. This charge is expressed by the market
as a “time-charter rate,”’ at which the use of a ship is traded.® 'The
time-charter rate expresses the ‘“‘scarcity” of ships in the period in ques-
tion, in terms of benefits forgone, or cost incurred by alternative methods,
because there is not one more ship available. When in a depression
ships are laid up idle, the time-charter rate as here understood ig zero.2

So interpreted, conditions (2.12) and (2.13) express that the profit on
any round voyage that is actually engaged in, or that can be pieced
together from legs-of-voyage (with or without cargo) actually engaged
in, ig zero to the entrepreneur, provided that he calculates the time-
charter charge as a cost. 'The profit is positive on no round voyage, and
negative on ineflicient round voyages. This is indeed the result of
entrepreneurs’ decisions in a perfectly competitive market, according to
accepted static equilibrium theory. If market demand, y,;, for transpor-
tation services on the various routes remains constant for a sufficiently
long time, the efficiency prices, p;;, are observable as freight rates per
shipload on the various routes. The economic potential function, p;,
is implicit in the calculations of the shipowners in choosing between
alternative round voyages. The type of contract that would make the
p; observable as market prices has to our knowledge not been in use in
ocean shipping or in any other transportation market.

Where competition is restricted, such as in line shipping, discrepancies
between freight rates and efficiency prices may result. This is even
more true, empirically, in transportation systems subject to government
operation or regulation. This is not an inevitable consequence of
governmental activity, but rather of the simple and crude notions of
“fairness’”” which have historically dominated such activity under the
watching eyes of highly interested local and functional groups of popula-
tion and industry. The resulting inefficiency in the geographical dis-

18 The type of time charter approximating most closely the concept of a time-charter
rate here applicable is known as the ‘bareboat charter,” by which the use of a ship
15 handed over for a period without erews or supplies.

= This statement is still based on the (unrealistic) assumption, made in Section 1,
that ali ships are of the same type and quality.
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tribution of industry has been briefly commented on elsewhere [Koop-
mans, 19471

2.11. Andalogy with Kirchhoff's law on the distribution of current in an
electrical network. There is an interesting analogy, with differences,
between the problem of minimizing the amount of shipping in use for a
given transportation program and the distribution of (direct) eurrent in
a network of electrical eonductors to which given electromotive forces
are applied at specified points. The latter problem, treated by Kirch-
hoff [1847], provided the stimulus for the mathematical investigation of
linear graphs.? The analogy is brought out by the following list of
reinterpretations of the symbols used above.

Interpretation in Interpretation in
Transportaiion Model Symbal Electrical Network
Ports i=1, -.--,n Connection points of conductors
Routes (N} Conductors
Empty sailing time 8if Resistance
Flow of empty ships Tij Electrieal current
Net shipping surplus b; Net eurrent made to flow into

the network from outside

Locational potential Bi Negative of electrical potential

In the electrical application the identity (2.6) expresses that the total
inflow of current into a connection point of conductors must equal the
total outflow. Kirchhoff’s law on the determination of the currents x;
in the various conductors can be derived from the minimization of the
total heat,

(250) h=x Z 8,",'1?3',

L7

generated per unit of time in the network, subject to the restraints (2.6)
on the currents. This differs decisively from the transportation prob-
lem, in which, instead of the quadratic form (2.50), the linear form
(2.51) —z = Z 8i4j

Tl

is minimized subject to the additional restriction #;; = 0. The heat
minimization problem lends itself naturally to application of caleulus

2 The cultural lag of economic thought in the application of mathematical methods
is strikingly illustrated by the fact that linear graphs are making their entrance into
transportation theory just about a century after they were first studied in relation
to electrical networks, although organized transportation systems are much older
than the study of electricity.
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by the method of Lagrange parameters. Because the function (2.50) is
a sum of squares with positive coefficients, placed under linear restraints,
the minimizing solution z;; is unique. It is found to be such that,
instead of (2.13b},

(2.52) 8% = —pi + Py

where —p; is the electrical potential at the connection point 7, obtained
as a Lagrange parameter associated with the corresponding restraint
(2.6).

It is possible to apply the same method to the minimization of shipping
in use, by the substitution

(2.53) zij = wh,  wyreal,

which insures that the condition z;; = 018 met. The locational poten-
tial then plays the same role of a set of Lagrange parameters. The
difference in sign in its definition is motivated by the fact that a ship is
more useful at the destination of an empty voyage than at the point of
origin, whereas an electric particle may be regarded as more usefully
located where the electrical potential is high. '
Because the degree in the x;; of (2.51) is one less than that of (2.50),
the difference in potential between two points ¢, 7 in the transportation
model is related o the “resistance’ or “time cost” only in the case that
zi; > 0, and is within that case independent of the value of z;;. Also,

the minimizing solution z.; lacks uniqueness if neutral circuits oceur in
the maximal efficient graph.



CHAPTER XV

EFFECTS OF TECHNOLOGICAL CHANGE IN A
LINEAR MODEL

By HerBERT A. SIMON

The term ‘“technological change” is employed in many senses in
economic literature. In economic history the term is generally applied
to any change in the methods of production used in an economy. The
change may result from an improvement or a series of improvements in
an existing process for making a commodity, which permits the com-
modity to be produced more cheaply, such as the series of improvements
in spinning and weaving processes that revolutionized the textile industry
in the eighteenth century. Or the change may involve the partial or
total replacement of an old resource by a new, such as the substitution
of petroleum for coal as a fuel by use of the internal combustion engine.
Or, finally, the change may involve the production of a new consumers’
good not previously in existence, such as the radio. These categories
are not mutually exelusive but indicate the range of phenomena falling
under the general heading of technological change.

In writings on economie theory technological change has been a some-
what narrower concept. There technology is generally represented by
production functions that state the maximum quantities of output
technologically obtainable from given quantities of inputs. A produc-
tion function may refer to a whole industry, a firm, a plant, or even a
single process within a plant. In such models a technological change is
represented by a shift in a production function, so that for some combina-
tion of inputs a greater output is obtainable than formerly. For the
most part such models have encompassed only technological improve-
ments in the production of existing commodities, and not those that
result in the introduction of new commodities. One advantage of the
models to be examined in this chapter is that they permit a clarification
and separation of the meanings of technological change—both those of
economic history and those of theory.

1. We briefly summarize here some of the properties of the models;
& more complete discussion has been set forth in Chapter 111, Section 1.
260
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The elementary coneepts in these models are commodities and activities.
Commodities are produced or used up in the process of production. If
we consider a single production period, we will have a stock of com-
modities at the beginning of the period and a different stock at the end
of the period; the changes (commodity flows) being determined by the
levels at which the various activities are carried on during the period.
Each activity represents a particular method of production (e.g.,
production of nitrogen by fixation from air with electrolytic hydrogen)
and is defined by equations stating the quantities of commodities con-
sumed and produced per unit level of the activity.

Let the vector y represent the commodity flow during a production
peried. If y; < 0, there Is net consumption of the commodity; if
y; > 0, there is net production. Let the veetor x represent the levels
of the geveral activities during the period. Then

(1.1) ' y = T,

where T is the matrix whose elements in the jth column are the quantities
of  consumed or produced by the jth activity carried on at unit level.
We suppose that ¥ has K elements, » has J elements, so that " is a
K X J matrix. We require that 'z = 0. Finally, we define as possible
points those points in the y-space which are transforms of the positive
orthant of the z-space, i.e., those y's satisfying (1.1) for some z = 0.

If we know in advance which commodities are to be produced (final
commodities), which are to be used up (primary factors), and which are
neither uged up nor produced (intermediate commodities), we may parti-
tion y and T, and write

(1.2) Yiw = Tan® = 0, for final produets;
(1.3) #int = Din = 0, for intermediate products;
(1.4) Ypri = I'priz < 0, for primary factors.

We assume that points, x > 0, exist which satisfy the equations and
inequalities (1.2}, (1.3), and (1.4). In general, the solutions will not
be unique. Hence we impose additional “‘optimizing’ conditions: 2

(1) We require that the transform, y, of a solution, z, eorrespond to an
efficient point in the y-space (i.e., that no possible y* exists such that
y* > y). In general, this requirement will reduce by one the dimen-
sionality of the set of solutions.

1 We adopt the notations for vector inequalities introduced in Chapter III, See-

tion 2.4,
2 See conditions (b), {¢), and (d) of Chapter III, Section 1.2.
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(2) Certain lower limits to elements of %1, or upper limits to elements
of %sin, or both, may be given.

(3) We may specify eertain relations among the elements of ¥, (e.g.,
Yin1 = K1o¥iin 2)-

(4) We may limit ourselves to those solutions that maximize some
function of ¥rin (6.8, 3.2 1¥sin ¢ = Max), or those that minimize some
function of ¥pri.

Suppose that we impose sufficient optimizing conditions so that a
unique z exists satisfying (1.2), (1.3), and (1.4). We call this an
optimum solution relative to these particular optimizing conditions.

We may now formulate a definition of technological change that is
broad enough to cover virtually all the topics that have at one time
or another been discussed under that label. A technological change is
any change in (a) one or more coefficients in T, or (b) the given lower
limits of elements of ., or (¢) the function of ¥y to be minimized.
We exclude from our definition changes in the other optimizing condi-
tions, as, for example, change in the function of ¥sn to be maximized;
the latter we may refer to as changes in taste.

In general, our first category—changes in I'~—corresponds to the eco-
nomic theorist’s definition of technological change. Of course, if the
theorist works direetly with cost curves instead of production functions,
his definition of technological change (i.e., a shift in a cost curve) will
encompass the third as well as the first category [Lange, 1944, Chapter
XII]. Mosteconomic historians have not distinguished among the three
categories of technological change and have been concerned with all of
them,

2. In the present chapter we shall consider only special cases of the
model (1.2)—(1.4). In particular, we shall impose severe restrictions
on the consumption side of the model (optimizing conditions referring
10 ¥sin). These restrictions are necessary in order to define unequivo-.
cally the effect of a technological change on total income. The admissibility
of such restrictions ig tied up with the question of aggregation and the
construction of an income index, but we shall not enter here into a dis-
cusston of that question.

One result of our self-imposed restrictions will be to rule out of con-
sideration the very interesting question of the effect of technological
change on the pattern of consumption and the introduction of new final
products. Since the generalization of the model to encompass such
questions would introduce a whole host of mathematical and eonceptual
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problems, it appears wisest at the outset to divide our difficulties by
setting a more modest _’cask. We begin with the following simple model

(21) A= Ty,
J

2.2) TS Yk = 2 T k=1,---,K).
F==1

In this model we have one final product, A, which is produced by a
single activity, the first. We have K primary factors and a total of J
activities. The m (maximum availabilities of primary factors) are
given. For an optimum we require that X be maximized. A technologi-
cal change will be represented * by a change in T, the matrix of the v;;.
Furthermore, we assume that the v;; satisfy postulate C; [III, Section
3.6], which guarantees a solution, =z > 0, z; > 0, for (2.1)-(2.2) with
n < 0. I a solution of (2.1)-(2.2) exists for some 4 < 0, say »* < 0,
then a solution exists for all v < 0, since Theorem 3.6.2 of Chapter ITI
(equivalent to postulate Cs [I1I, Section 3.6] which guarantees a solu-
tion) imposes conditions only on T irrespective of x.

Buppose that we have found a solution, for given I' and 5, of (2.2).
In this golution we shall have, with appropriate ordering of the elements
of 7y

(2.3) e = Yk (k= 1 .- 7K°)»
(2.4) m<y (k=K +1,--- K; K°ZK)
We shall also order the z’s in such a way that

;>0 for ji=1,---,J%
(2.5) ! .

;=0 for j=J°41,-.-,J V°=sJ).

The first K° elements in 5 then represent the scarce, the remaining
elements the free, primary factors; the first J° elements in z represent
economical activities, the remainder, uneconomical activities.

We shall define as a reduced system corresponding to (2.1)-(2.2) the
system: :

(26) A= I,
JO

(27) N = E Vil (k’ = 1) Tty KQ)-
F=1

3 Here T' corresponds to I'pri in (1.4). We shall continue to omit the subscript in
order to simplify our notation. Note also that A in (2.1} corresponds to ysip in (1.2),
and y in (2.2) to yp.s in (1.4).
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In the reduced system we designate by T'° the matrix of the vg;
k=1, --+,K°%ji=1,---,J°; by 5° the vector of the m (k =1,
.-+, K°); by 2° the vector of the z; ( = 1, --- , J°); and by I'° the
matrix formed by eliminating the first column of I'°.  'We shall restrict
ourselves to the case (which is the general case) where the ranks of T'°,
[n° T°l, and (T° are equal to the respective numbers of their rows or
columns, whichever is less. In this case we shall say that the reduced
system is regular. We are confronted with three subcases according to
whether J° < K°,J° > K° or J° = K°.

Case I: J° < K° (more scarce factors than economical activities).
Then equations (2.7) are inconsistent and have no solution, for the rank
of [n° TI°is (/° 4 1) > J°, the rank of I'°.

Case II: J° > K° (fewer scarce factors than economical activities).
Suppose that z° > 0 is a solution of (2.7). Then there will exist an
¢, with ¢; > 0, which satisfies

(2.8) 0 = I

For sufficiently small x> 0 we shall have (z° 4 ue®) > 0, and (2° 4 ue®)
will satisfy (2.7) and (2.4). Since we have (z° + pe®h = (73 + pey)
> zi, it follows that z° is not an optimal solution of (2.7) (i.e., a solution
maximizing N = z1).
Hence, for an optimal solution, our reduced system must fall in
Case III: J° = K° (as many scarce factors as economical activities).
We may restate our conclusion in the following

TreorREM: If the reduced system corresponding to a solution, z, of (2.2)
be regular, then a mecessary condition that the solution be optimal (i.e.,
mazimize \ for the given 1) is that J° = K°.

If the reduced system is regular and J° = K°, (2.7) will have g unique
solution, z°. Hence, if we know which factors are scarce and which
activities economical for the optimal solution, x, of (2.2}, this optimal
solution can be obtained algebraically from (2.7)—i.e., its nonzero com-
ponents are the unique solution, z°, of (2.7).

Analogous theorems can. be derived for the more general models we
shall use in subsequent sections. Hence, so long as we restrict ourselves
to a particular regular reduced system, we may find the optimal solution
as the unique solution of this reduced system.

3. We now introduce a model that assumes a number of final com-
modities with perfect substitutability in consumption among them,
Alternatively, we may interpret this model as admitting J different
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activities for producing a single final product. This model is represented
by

. J
(31) A= Z Yoits ('YDJ' > 0; J = 1: fe rJ)r
F==1
J
(3.2) e S Yk = D Yai%i (k=1---,K).
i=1

In the special case where K == 2 (two primary factors) but J is un-
restricted, this model can be given an instructive graphical representa-
tion. In Figure 1, ¥ and y» are quantities of the two factors (not neces-
sarily both scarce). The broken line, AA’, is an isoquant on the produe-

Ficure 1

tion surface for X (i.e., A is constant along this line). The production
activities, I, II, III, and IV, employ ¥; and ¥ in varying proportions
(e.g-, activity I employs v1; units of ; to each +ys; units of 2). The
dotted portion, BDE, of AA’ shows the path of the coniour when 3
combination of activities I and II, or of IT and III, is used; the solid
portion BCE shows the contour when aetivities I and IIT are used.
Hence the dotted portion represents noneconomical activity Ievels.
Activities 1, I1I, and IV are economical for partieular ranges of factor
availabilities, whereas 11 is uneconomiecal under any circumstances.

If the ratio of available y; to available ¥, (i.e., m/%2) is as shown by
line ¥, then III and IV will both be economical activities, I will not.
It will be shown later that the ratio of factor prices is given by the
negative of the slope of EG.

Frem Figure 1 we can immediately read off a number of conelusions
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which are easily generalized to the case of one final output and many
(K > 2) factors.

(a) With the factor supply as shown by Y, a greater product will result.
from the combined use of activities III and IV in suitable proportions
than from either alone.

(b) The points of intersection of AA’ with the activity functions I,
I1, IT1, and 1V (points B, D, E, () depend on the technieal coefficients
in these functions. Any change in the coefficients can be represented by
the combination of a movement of the line representing the activity
through some arc {change in the proportions of the factors) combined
with a movement of the point of intersection along the line. Changes
in the list of economical activities can come about either through changes
in relative faetor scarcity (movement of ¥) or changes in the technical
coefficients {movements of the activity functions and their intersections
with AA4").

(c) We may call an activity eligible if it is economical for some factor
ratio. Activities I, IT], and IV are eligible, IT isnot. A sufficient down-
ward movement of point 7> will make II eligible, A somewhat greater
movement will make IIT ineligible (in which ease 11 and IV would be
the economical activities), and a still greater movement will make I
ineligible.

(d) If ¥ were to move sufficiently to the left, T and III would replace
111 and IV as the economical activities. The same would oceur if, in-
stead, ITI moved sufficiently to the right.

(e) Of the eligible activities, those tend to be economical which em-
ploy the factors in ratios closest to the actual ratio of factor availability.
This offers a possible explanation for the relative stability of the ratio
C/L noted by Douglas in his interindustry studies of the production
function.

() If ¥ moves sufficiently to the right, or IV sufficiently to the left,
IV will be the only economical process, and ¥, will become a free factor.

() If a new process becomes ¢ligible it either (1) has no immediate
effect (if it lies to the right of IV or to the left of III}, (2} displaces one
or both processes previously used (if it lies between 11 and IV), or (3)
makes scarce a factor previously free (if ¥ lies to the right of IV and
the new process to the right of ¥).

(h) Suppose that only the process I were known. Then 3, would be
free. Suppose now that the eligible process ITI were invented. Then
IIT would replace I, and g, would remain free. Suppose, however, that
IV were invented instead of III. Then I would not be displaced, but
both T and IV would be economical and y; would become scarce. We
have the somewhat paradoxical situation that the less “revolutionary”
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invention completely displaces the old process, whereas the more ‘‘revolu-
tionary” invention only partially displaces it.

These examples will illustrate some of the characteristic properties
of our model.

4. Next we may take explicit note of prices. Aeccounting prices can
be introduced into the reduced system corresponding to (3.1)-(3.2) by
the following equations:

(4.1) Pi = Yoibr G=1,---,J%,
. .

(4.2) pi = — 2 il =14 - ,J9,
k=1

where py, is defined as the price of the final product, p; as the price of
a unit level of the jth activity, and Pj as the price of the kth scarce
factor. Equations (4.1) state that the price of the jth activity is equal
to the value (price times quantity) of the final product produced by the
unit level of the jth activity., Equations (4.2) state that the price of
the jth activity is equal to the value of the primary factors consumed
less the value of the primary factors produced by the unit level of the
jth activity. [Compare Chapter II1, equations (4.15).]

Since in this reduced system we must have (in analogy to our theorem
of Section 2) K° = J°, the p; and P; will be uniquely determined as
homogeneous functions of the first degree in p.

It will be noted that the supplies of the factors affect prices only
indirectly (i.e., by defermining which factors are scarce and which
aectivities economical). Given the reduced system, prices do not vary
with changes in the supply of factors. Changes in factor supply, unless
large enough to bring about a shift from one reduced system to another,
affect only the levels of the various economical activities.

5. Thus far we have examined the effects of technological change (in-
cluding changes both in the production coefficients and factor scarcities)
on the economy of production activities. An equally important task
is to measure the changes in income consequent upon technological
changes. In all the models we have introduced, we possess an un-
ambiguous index of income {since utility is derived from consumption
of a single final produet) in our variable . Tt will be necessary to
distinguish two cases:

(1) The technological change may not alter the lists of scarce factors
and economical activities. The reduced system would then contain the
same set of variables and equations as before, with altered values of »
and the v4; in this reduced system.
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{2) The technological change may make some activities economical .
that were not so before, and vice versa, and may make some factors
scarce that were not so before, and vice versa. When the effects of a
technological change are of the second type (i.e., when they include
changes in the lists of economical activities or scarce factors), we shall
call them “trigger effects.”

We consider first the income effects of technological changes of the
first type, using for this purpose our model, (3.1)~(3.2). Quantities
before and after the technological change will be designated by unstarred
and starred symbols, respectively, z; and «}, ete.

Ii our technological change is confined to the first activity, ie.,
Ve Vel The = Yhe (k= 1,2, -+ K% s=23, .- ,J°, weshall have
the following equations for the reduced system before and after the
change:

JO Jﬂ
(5.1) A= D vem, AN =2 yerd (G=1,--,J9,
j=1 i=1
% - i kK
(52) mi=m= 2 wimi= 2, vexy (=1, K% J =K",
§=1 el

If we take py = 1, we have, from (4.1), yo; = p;. Hence
(5.3) M= = 2pilE — =)
7

But from (4.1) and (4.2) we also have

Ko K®
(5.4) — 2 Puviy =9 =pi= — 2, Pivis
Kl K=1
whence
AF—A = —E E (Pk'yk,-xf - Pk'ijxj)
B

—Z Z (P k’ijx;‘ = Pk'Y]tjx; )

Eoj
5.5
(5.5) = _g [Py Z (vi; — Y]

= =2 Pulys — vi)at.
P’
We now define

(5.6) P = — 2, v Px;
k
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that is, we take as 5, the price of the improved first activity in terms of
the original factor prices and obtain

(5.7) N — X =gl — pr).
The economic significance of (5.7) becomes clearer when we rewrite it

A — N mpip — P2l
= = vlplElr
A A Poox

(5.8)

where
= Hip/ N, o1 = (pr — P1)/p1, E = x’lk/l‘i-

Since Y x;p; = A, the first factor on the right-hand side of (5.8) meas-
ures the magnitude of the first activity as a fraction of national income;
the second factor measures the relative magnitude of the technological
change (the resource-saving effect); and the third factor measures the
change in level of the first activity resulting from the technological
change (the substitution effect).

Equation (5.8) lends itself to empirical estimation (in advance of the
change) of the income effect of a technological change of known magni-
tude. The factor »; is obtained from production and price data prior
to the change, and p, is obtained from an engineering estimate based on
factor prices prior to the change. The estimation of E; presents some
difficulties, as £ is not in general uniquely determined by p,; we can,
however, express Ey as a function of p; in certain special cases.

Casge A: Suppose that

(5.9) vm=0—oyn k=1 ,K°% 0<o<l).

This means that the technological change results in proportionate savings
of all factors required in the first activity. In this case we readily find

(5.10) p1L =0,
(5.11) 2 /z = 1/(1 — o) = 1/(1 = py),
whence N
AT — A P1
5.12 =y .
{(5.12) 7\ T

Table 1 shows the values of (A* — )\)/X for particular values of »y and py,
ag calculated from (5.12). Trom this table we read, for example, that,
if we had a cost reduction of 25 per cent (p; = 0.25) in an activity produc-
ing 10 per cent of national income (v; = 0.1), the resulting increase in
national income would be 3.3 per cent.
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Taete I (A — N/A = nilor/(1 — o1)]

W L oot b0 fo2st o5 | 075 ) 09 | 095 | 0.0
0.01 |0.0001|0.001 0003 0.01 | 0.03 | 0.09 | 0.2 1.0
0.10 | 0.0010 { 0.011 | 0.033 | 0.10 | 0.30 | 0.90 1.9 | 9.9
0.25 |0.0025 { 0.028 |0.083  0.25 | 0.75 | 2.25 | 4.8 | 24.8
0.50 10.0050 | 0.056|0.167 | 0.50 | 1.50 | 4.50 | 9.5 | 49.5
0.75 | 0.0076 | 0.083 | 0.250 | 0.75 | 2.25 | 6.75 | 14.5 | 74.3
1.00 | 0.0101 {0.111 |0.333 | 1.00 | 3.00 | 9.00 | 19.0 | 9.0
Case B: Suppose that

(513) 7:1 = Ykt — THk (k = 11 Tty KO; 0<r< 'Ykl/ﬂk)-

This means that the technological change results in savings in all factors

of production in the first activity proportionate to the factor avail-
abilities. In this case we find

) TTy
(5.14) n=-,
5
: zy 1 1
(5.15) L =
2 1 -1 1 —vpt
whenece .
AF — A p1
(5.16) - .
A 1 —oupm
TasLe I (A* — M)/ = oifp1/(1 — vyp1)]
o o | 0ot | 010 | 025 |0.50 | 0.75 | 0.90 | 0.95 | 0.9

0.01 0.0001 0.001 0.003 | 0.005 | 0.008 | 0.009 | 0.01 [ 0.01
010 0.0010 0.010 0.026 | 0.053 [ 0.081 | 0.099 | 0.11 | 0.11
0.25 0.0025 0.026 0.067 | 0.14 | 0.23 | 0.20 0.31 | 0.33
0.50 ©.0050 0.053 0.14 0.33 {0.60 [0.82 0.91 1 0.98
0.75 0.0076 0.081 0.23 0.60 | 1.3 2.1 2.5 2.9
0.90 0.0091 0.099 0.29 0.82 | 2.1 4.3 5.9 8.2
0.956 0.0096 0.11 0.31 0.81 | 2.5 5.9 9.3 | 15.7
0.90 0.010 0.11 0.33 0.98 | 2.9 8.2 15.7 | 49.0
1.00 0.010 0.11 0.33 1.0 3.0 9.0 19.0 | 99.0




CHAP, XV] TECHNOLOGICAL CHANGE 271

Since 0 < v, =1, the income effect for given values of p; and v, is
greater in Case A than in Case B. Table 1T shows values of (\* — \)/x
for particular values of »; and p;, as calculated from (5.16). From
this table we read that, if we had a cost reduction of 25 per cent (p; =
0.25) in an activity producing 10 per cent of national income (v, = 0.1),
the resulting increase in national income would be 2.6 per cent. (The
corresponding value from Table I was 3.3 per cent.)

6. We are now in a position to examine the effects of technological
changes of the second type—technological changes that cause the econ-
omy to shift from one reduced system to another. We shall restrict
ourselves to cases where the list of searce factors remains the same and
only the list of economical activities is altered. The effects of such
changes, which we have called trigger effects, are of two kinds:

(1) Through technological improvement of an activity, I’ (ie,,
changes in the v,p), this activity becomes economical and replaces a
previously economical activity, I, which now becomes uneconcmical.*
That is, if  was the first activity in I'°, we replace vi2 = 71 by vf2 = v41-

(2) Through changes in the technologieal coefficients of an economieal
activity, I, or through changes in the relative availability of the factors,
a previously uneconomicel activity, II’, becomes economical and replaces
a previously economical activity, II. That is, if IT was the second
activity in T°, we replace yirz = yar1 by i = VeIl

Changes of the first type are indistinguishable, both conceptually and
as to their effects, from the changes discussed in the previous section.
That is, we really cannot distinguish between (a) a technological change
that improves the first activity but does not cause the economy to shift
to a new reduced system (i. e, 'ykl = vu1 becomes v5, = vip), and (b)
a change that substitutes a “new” activity for the first activity (i.e.,
Y1 = vm becomes vj; = vxr). In economie terms, if machine Ioa,ding
methods are so improved that they replace hand loading methods in
coal mining, it makes no difference whether we say that there has been
an improvement in the activity of coal loading or whether we say that -
a new activity, machine loading, has replaced an old one, hand leading.
From the standpoint of estimation of the effects, too, we proceed exactly
as we did in the last section. That is, we replace the coefficients in the
first column of T'° in the reduced system with the new coefficients and
proceed to evaluate A¥,

¢« In what follows, we shall use Roman subscripts to denote the coefficients of a
particular activity (e.g., yz1), but we shall continue to use Arabic subseripts to denote
the columns of I' (e.g., vz1). Hence, when activity I becomes the first column of
T°, we have vy = vux k=1, ---,K".
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“Trigger” changes of the second type are essentially different. Here
the initial technological change, consisting of a change in a column of I'°
or a change in °, brings about a derived change in another column of I'°
in the reduced system. (It may even change the number of rows and
eolumns of T'° in the reduced system; e.g., a new activity may be added
and a previously free factor may become scarce, or vice versa, but we do
not discuss this case here.) Such a derived change in T'°, if induced by
an initial change in %°, would not even be considered a technological
change in the narrower sense, although it has generally been so considered
in economie history. An example of the latter phenomenon would be
a (derived) substitution of machine methods for hand methods in coal
mining through an increase in the supply of capital relative to labor,
and without the introduction of any activities not previously known
and available.

The procedure for estimating the magnitude of the income effect of
a technological change that produces a derived trigger effect of this
kind is more complicated than the estimation procedure set forth in
Section 5. Our two-dimensional diagram (Figure 2) suggests a method
of approach. Let us suppose that, prior to the technological change,

FiaURE 2

the minimum quantities of the factors required to produce one unit of A
by the use of various activities and combinations of activities are given
by the isoquant ABCIY. Then activities I and II will be economical and
will appear in the reduced system, while activity IIT will not.

Suppose now that we have a technological improvement in the first
activity, giving the new isoquant A’B"’D’, with 111 now economical and
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IT uneconomical. The movement from the isoquant A BCD’ with income
 to the isoquant A’B”D’ with income A\*** i3 equivalent to the product
of three (hypothetical) movements:

(a) ABCDY to ABCD () remains unchanged). We may interpret this
by imagining a technological improvement in activity IIT which makes it
just competitive with activity II; and, in consequence, there is replace-
ment of I by 111 without decreasing X.

(b) ABCD to AB'D' (with ineome A** < A). This is equivalent to
returning from the improved to the unimproved form of activity III,
but not replacing it with activity TI. Hence we have a decrease in
income.

(¢) AB'D' to A'B"D’ (with income M*** > )\). This represents &
technological improvement in activity I in an economy that is employing
activities I and III (the latter in its unimproved form).

The meaning of these three movements may be further clarified by
the following comments. Prior to the technological improvement in
activity I, Il was economical, III was not; subsequent to the improve-
ment in activity I, ITI was economical, IT was not. Step (c) gives the
increase in income from the technological improvement in activity I.
on the assumption that activity 111 was economical before the improve-
ment. From this amount we must subtract a certain portion because
III was not economical before the improvement and hence a solution
involving a positive level of activity 11T was not optimal. This sub-
traction is accomplished in steps (a) and (b) above.

We now define as a column transformation of the matriz T° of the
reduced system the replacement of the v¢;in the jth column by new values,
vz Column transformations form a group of transformations. The
entire eourse of our technological change is represented by the product
of the following column transformations:

(a") We replace in column 2 of I'° the v by v = vemr /(1 — 1),
where the vy correspond to point C, yun to point D, and vy to D’
in Figure 2. Here IIT’ designates the actual coefficients of activity III,
and IIT designates the values of the coefficients required to make this
activity just competitive with activity II. We shall later use the latter
condition to find the value of . ‘

{(b") We replace in column 2 of T® the yam by verr.

(¢') We replace in column 1 of I'® the vu by virr = (1 — o)var
- (corresponding to A and A’, respectively). Here I designates the
coefficients of activity I before the technological improvement, T/ the
coefficients after the improvement. The parameter ¢ measures the
magnitude of the improvement.

Transformations (b") and {e’) correspond to Case A of Section 5 and
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can be evaluated by the method of that section. It remains to find ,
and the effect on the z's of the firgt transformation. We shall indicate
how this can be done in one special case.

We designate by T' the original reduced matrix ® of the vi;; by T*,
the matrix after transformation (a’); by T'**, the matrix after transforma-
tion (b’); and by T***, the matrix after transformation (¢’). Further-
more, we denote by | 4, T; | the determinant of the matrix obtained by
substituting » for the jth column in T. Since the first transformation
leaves A unchanged, we have

J° Je
(6.1) A= Z Yoi¥t; = Z 'yo,-:c? = ¥,
F=1 F=1

We take the v;1 as the first column in T, and i, e, and ven'
as the second column in their respective matrices. Then-

* *ok .

Y1 = Y1 = Ykt = YR
Aotk ' * *5 ok .
Y1 = Vil , Ye2 = Vil Y2 = YIII, Y2 T Ye2 = YEIIIY,

* Aok .
Vi = Vi = Vi = Vig (G##1,2).
We also make the special assumption that
* Yoz | o

62) van=vme=v2to iz = e (p>0; k=1,---,K%

This corresponds, in Figure 2, to the fact that 1II is “farther” from ¥V
than ig II. It can be shown that (6.2) implies (6.1). We find imme-
diately that

Yozp

(6.3) [T*| = @+ ol 7| = —[n T},
(6.4) |0, TF | = (1 + o) m, Ty | =2,
(65) l Th P; l = ‘ m r2 |:

« 0TS [ AL + p) ]
6.6 = — 2
(©6) K | % 7L + p) — yozzze
(6.7) 3 [ A ]
. =z .
® ? A1 =+ p) — voaT2e

Since p is assumed to be known from (6.2), these equations perinit us
to find the z*'s in terms of the #’s. Next we proceed to evaluate 1.

(7 # 2),

& T'o simplify notation we now omit the superseript ° from the mairices and vectors
of the reduced system.
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Since I1I is, by definition, just competitive with II, we must have

& £ m
(6.8) P = sz2Pk= Z'Yksz= 2 Py,
Resl k=1 k=1 (1 - “')
and it follows that
KO
> viz Pi

(6.9) 1—1 =
P2

That is, (1 — r) is the ratio of the actual cost per unit level of activity
111’ to the cost per unit level of activity II.

Now we may employ (5.7) to find M** in terms of A, and A*** in terms
of N*¥,

(6.10) N = N+ 23 (ps — Ba),
NEEE < N L T - B
=X+ 23" (2 — o) + 2T @ — P1);

where, in analogy Wlth our prewous definitions, pi¥ =K l-yklP:*,

'** Ek 17’1::‘* k = (1— G)Pl y P2 = Ek-ﬂ’mpk, D2 = Ek:wl'Yksz
= (1 — 7)pe. Hence, from (4.1) and the fact that p;* = py,

(6.12) AR =\ 4 ¥ 4+ 500,

(6.11)

Corresponding to (5.11}, we have
(6.13) o =ay /(L —1); =21 = o).
But lm I =0—7{n If|; and lI‘**]-——(l—'f)lP'; hence

2* = z}. Therefore we get

74

(6.14) AEFE = ) | 332?32 T + 371101 1 —

a

The z¥s in {6.14) can be obtained from (6.6) and (6.7); the parameter
¢ is known, and r is obtained from (6.9). Hence (6.14) gives us a
procedure for estimating A*** in terms of quantities that are known prior
to the technological change in activity I. It should be observed that
(1 —7) > 1, and hence + < 0. That is, the second term on the right-
hand side of (6.14) is negative, as we should expect from the fact that
activity 111 was uneconomical prior to the improvement in I. It should
also be observed that the third term on the right-hand side of (6.14)
corresponds to the right-hand side of (5.7).
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7. The methods of the two preceding sections ean be applied without
essential alteration to a model where there is an intermediate activity
(i.e., one not producing the final good) that undergoes technological
change. In'this model we take the first activity as an intermediate one
(e, vor =0, m =0, and y1; = 1) and define p; = P; = Ziﬁz Yi1 Pr.
We designate by C the submatrix of I' that omits its first row and first
column. We employ 4 to designate the (K° — 1) vector consisting of
all but the first component of », and ¥; to designate the vector with
components yg k=2, .-+, K°.

We now assume that yf = ay;. This corresponds to Case A of
Section 5. In this case we find that

aX (Yo} 1, C; N (vasl v, Ci )
_ 1| — el m G Edn Gl |
el - ZOwiln CillCh
X (vl v, Ci| )— | C]
If we further specialize to the case where
(7.2) Tlvoil n G il v, € ) = Zlvesd v1, € ) Zvasl m, G 1),
then (7.1} reduces to

(7.3) At

(7.1)  A*

_ > voil m, Cy | )
| €| = aXvis] v, €5
But (7.2) is satisfied under either of the following circumstances:

(7.4) Y1 = Mg,
or
(7.5) 1 = Ny,

where m and n are arbitrary constants.

Equation (7.4) corresponds to the case where the requirements of the
first factor in the other (J° — 1) activities are proportionate to the
prices of these activities. Tquation (7.5) corresponds to the case where
the requirements of the other factors in the first activity are proportionate
to the factor availabilities. The economic meaning of (7.3) is suggested
by its limiting value as the first factor becomes free (i=., as @ — 0),

to wit:
7.6) = Zvosl 0, G5 |
¢l

The value of A* in (7.6) is the value it would have in an economy from
which the first activity was absent and from which was also absent the
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commodity represented by the first row of T (i.e., the commodity
“produced” by the first activity). Equation (7.3) can now be rewritten
as
1 1 1
_ - +8 ,
|1, G 1+ a8 1+ af
I - aZ'mW

where 8 = — Y v1] 11, Ci ]/I C|, and N is the upper limit of \* for
a=0.

The parameter § may readily be shown to be equal to the value of the
scaree factors used up by the first activity as a fraction of the total value
of the scarce factors (excluding the commodity in the first row from the
scarce factors). Since B can generally be estimated and « is the known
magnitude of the technological change in the first activity, (7.7) permits
us to estimate A*.

77 AE=N

8. Although, because of the very special nature of our models, we must
not take too seriously the actval numerical caleulation of the income
effects of technological change by the methods of Sections 5, 6, and 7,
still these methods might indicate the order of magnitude of such effects.
Their usefulness derives from the fact that they do not require a knowl-
edge of the entire matrix I We need to know only the equilibrium
values of prices and quantities prior to the change, the factor avail-
abilities, and the estimated magnitude of the change. In the case where
we wish to include trigger effects, we must also predict in advance which
derived changes in the set of economical activities are likely to be brought
about by the initial technological change. It would be desirable to
establish qualitative criteria, based on the general properties of the
models, that would assist in such prediction.

COMMENTS

By AnsLey CoALE

My comments are divided into two parts: first, a proposed terminology
to be used in discussing technological change; and, second, a discussion
of new products and new materials, which are not, I feel, covered by
Simon’s model.

I suggest that we distinguish between ways of doing things, which I
would eall “techniques,” and knowledge of techniques, for which I sug-
gest the term “technology.” Any adoption of a new manufacturing
process, for example, is a technical change. But this change may follow
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from the spread of technology within or between communities or from
a change in relative costs making a known but unused technique advan-
tageous, as well as from the discovery of a new process—and it is for
the first and last type of change, especially the last, that T would reserve
the term “technological change.” Current technique in a community
comprises the methods currently in use; the current techhigue of produc-
tion corresponds, I believe, to Mr. Simon’s reduced matrix. Current
technology, on the other hand, includes all known processes, not except-
ing those at present unexploited. Current technology would determine
his full matriz.

The use of a definition of techniques as broad as “ways of doing things”
is deliberate. Though the definition is no doubt too inclusive—since
we are not directly concerned here with, for example, the techniques of
poetry—the broadness of the definition has the virtue of calling attention
to the fact that methods other than those defined by coefficients of
production are of economic significance. The consumer as well as the
producer has techniques; and the introduction of a new consumers’
good is often a change in the way the consumer does something (or in
what he does).

Only a fraction of the technical change which actually occurs can be
described by changes in the technical coefficients of production within a
model characterized by a bill of goods of specified composition. The
examples of technical changes in the last half eentury which would oceur
most readily to a casual observer would surely inelude air travel, radio
and television, and other novelties which have altered the consumers’
bill of goods. Infact, I suspect that those changes which at first thought
are changes solely in process will on further consideration often prove
to entail a change in product as well. For example, when a new process
of refining a raw material is discovered, the result is frequently not only
a change in the proportions of a fixed list of inputs, but also a change
in the nature of the output (a higher octane gasoline or a new useful
by-product). Tostate the point in terms of Simon’s matrix: many actual
technical changes have the salient feature of introducing new consumers’
goods—adding new rows as well as columns to the matrix; even those
changes which at first glance seem to be only a change in coefficients are,
in fact, inseparable from new items in the bill of goods. Tor instance,
even if women's nylon hose are regarded as the same commodity as silk
hose, recognition of the manufacture of nylon as a possible input to the
hose industry requires the introduction of a new row for nylon.

This characteristic of technical change—that it is associated with
changes in product and input materials—makes the eonstruction of a
realistic model quite difficult. A concept such as “real income,” which
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is sufficiently difficult to define satisfactorily anyway, becomes nearly
meaningless when new items are introduced into the bill of consumers’
goods, Suppose, for example, that we deseribe the output of consumers’
goods in periods I and IT by the following table:

Good
o 1 H j k n—1 n
Period
I @ | o | | @ | o ok -0 0
It 0 [0 || | & | e @

Then the comparison of “real income” by the use of a sum of money
value at fixed prices—always an ambiguous and unsatisfactory device—
becomes impossible. There are no prices in I for goods k + 1 to n, and
no prices in I for goods 0 to 7. Thus, if we attempted to construct a
model of technical change wherein product changes were allowed, the
meaning of “income effect” would not be clear.

The basic difficulty may be that technical change—by altering the
way in which things are done, by changing what consumers do and what
they want as well-—creates such a basically shifting world that we can
put very few restrictions on the matrix we design to describe it.

COMMENTS

Bt Yarr BrozeN

The usual definitions of technological change fail to distinguish ade-
guately between change at three different levels. Devising or perfecting
a new technique which is economic for some resource combinations adds
to the technological possibilities. The introduction of a previously un-
used technigue represents a change at the level of the technological leaders.
The spread of a new, efficient technique by imitation changes the average
technology. The latter would appear also as a change in the matrix
representing the actual input-output relationships of the economy.

Change in technologieal possibilities can be defined as the addition of
a new column to the Koopmans model of production in which some or
all of the technical coefficients except one would be larger, in the algebraic
sense, than those in an old column. One coefficient would remain the
same if a unit of activity were defined in terms of that one. An increase
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in the negative coefficients would mean a decrease in the amount of
factor required per unit of output or required to cooperate with a unit
of one factor, the alternative depending on the method of defining a
unit of activity. An increase in the positive coefficients means an in-
crease in commodity output per unit of activity,

‘Whether all coefficients but one in the new column are larger than those
in an old will depend on the unit selected for the definition of a unit level
of activity. A definition might be selected which would result in the
new column having coefficients some of which are larger and some smaller
than those in an oid column. Since the new technique must be more
efficient for some resource combination than the old ones available if
it is truly an addition to the technological possibilities, a unit of activity
can be chosen for comparison with each of the old techniques that will
result in some coefficients appearing larger in the new column and none
smaller than in the old column with which it is being compared.

A change in technological possibilities or at the level of technological
leaders—assuming that each leader has a relatively small proportion
of the resources uged in any one activity—would malke little or no differ-
ence in the input-output coefficients of a Leontief matrix representing
aggregate relations in the economy. Only the third form of change
defined above would affect that matrix. Under some circumstances,
there may be changes in this matrix which are not a reflection of tech-
nological change in the sense that a spread of new techniques is the
originating factor, Changes may be the result of an adaptive response
to changes in the relative scarcities of resourees (i.e., there may be shifts
from the use of one column in the Koopmans model to another). Typi-
cally, some Leontief coefficients will increase and others decrease if this
is the case. Increased supplies of capital will cause a shift to more
capital-intensive processes with an increase (algebraic) in labor coeffi-
cients and a decrease in capital coefficients. However, technological
change may produce the same sort of shifts. For this reason, it is often
difficult to distinguish between the processes of technological ehange and
the processes of adaptation to changed resource supplies.

Fiiting technological change into the linear programming framework. If
technological change were solely a function of time, the coefficients could
be made a function of time. The rate of change varies, however, accord-
ing to the amount of resources devoted to developing technological possi-
bilities (research activity), the amount devoted to introducing new dis-
coveries (leadership activity), and the amount devoted to introducing
changes into other firms (imitative activity). If we introduce these
activities into the matrix as additional columns, the coefficients could
be made a function of the previous levels of these activities. This,
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however, would introduce nonlinearities. If we introduce additional
rows ag well as columns for these activities and treat the output of these
activities as inputs to other activities, linearity can be maintained.

In terms of Simon’s graph, changes in technological possibilities of a
cost-saving type appear either as a movement of the point representing a
given level of output toward the origin along a ray, or as an introduction
of a new ray with the point representing a given rate of output lying
closer to the origin than any point on the old isoquant. Resource-
widening changes would appear as an increase in the upper limits of the
available factors. Where an output using resources recently made
available by improved technique is an input to other aetivities, a resource-
widening technique at one level of production may be interpreted as a
cost-saving technique at other levels. A new method of drilling that
makes accessible oil pools lying beneath hard strata may be regarded as
widening the number of oil pools or as reducing the effort required to
obtain any given amount of oil. Other cases of resource widening, how-
ever, such as the increase in labor of a given skill resulting from the
invention of a hearing aid, are not as easily interpreted in cost-saving
terms. A third type of technological change, the invention of new
products, is not easily interpreted in terms of Simon’s graph. If we
regard the product as giving more services for a given cost, it may be
interpreted as a cost-saving invention. This requires some torture of
the econcept, however, in the case of consumer goods.

Significance of technological change. If we regard change as activities
capable of produeing certain desired results or as inputs to other activi-
ties which produce such results, the problem arises of determining the
optimum level of these activities. How much research activity, leader-
ship activity, and imitative activity should we undertake? To make
these decisions we need more erapirical information about the relation-
ship between inputs to and outputs from research, development, and
application. We need measures of the usefulness of research results
(inventions) and the cost of applying the results (spreading information
10 those who can use it, and motivating its use). Simon’s graph provides
us with a method of measuring the usefulness of ¢ost-saving inventions.

Public policy is being made at every level of technological change.
Public funds are being spent on research (e.g., the atomic energy pro-
gram). Public funds are devoted to change at the level of leadership
(e.g., model farms) and to increasing imitation (e.g., county agents).
Not only are these levels influenced by direct public activity, but also,
indirectly, by public policy embodied in such items as tax and patent
law. If linear programming can better formulate the criteria for optimal
levels in these various programs, decisions can be more efficiently made.
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THE ACCURACY OF ECONOMIC OBSERVATIONS!

By Osxar MORGENSTERN

Applications of theories such as those of linear programming use data
that are subject to various errors. The significance of the far-reaching
computations necessitated by these theories will depend on the knowl-
edge of the errors. It is, therefore, necessary to form as precise ideas
as possible about the accuracy of economic observations. So far there
have been no tangible results regarding the quantitative estimation of
errors in economic statistics, although attempts to improve the statistics
in a general sense are made continuously wherever they are collected.
But the aecuracy actually required depends on the purpose of the
statistics. Rough estimates may be all that are needed for one purpose;
accuracy down to one-tenth of one per cent may be far too coarse for
another. Accuracy of a given statistic can, therefore, not be uniformly
good or bad. It can be judged only from the point of view of the theory
which interprets the statistics and directs further logical and mathe-
matical operations. Linear programming requires enormously large
numbers of operations, and, at least for that reason, a high degree of
accuracy is required. As a rule, however, present economic theory is
not of a very fine-grain structure—a condition that may gradually be
overcome. Furthermore, it is doubtful that there are many fields in
economics with a theory powerful enough to make use of more than
three or four significant digits. Published statistics, however, often
seem to indicate that many more digits would be available. In addition
this being frequently questionable, there would hardly be any theory
available now to cope with such fine measurements.

It is noteworthy that little is known, except in an over-all way, about
the extent of the errors in economic statistics. In the natural sciences
a long tradition exists, and the study of errors has occupied a very

t A memorandum of this title was presented at the Conference on Linear Program-
ming. In view of its length a separate publication has been undertaken [Morgen-
stern, 1950]. The following abstract serves only to indieate some of the main points
that are discussed #n extenso in that monograph.

This research is part of a project carried out under contraet (N6 ONR27009) with
the Office of Naval Research (Project NR 042086).
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_ prominent place. Otherwise their progress would have been unthink-
able. The difficulties of estimating errors of the data for the social
sciences, however, cannot possibly be less than for the natural sciences.
In fact, the sources of error are more numerous and the statistical prob-
lem is far more serious in the social sciences. Consequently the treat-
ment of errors of observation has to be at least as rigorous as in the
natural sciences. A factor not present in the latter field is unfortunately
of great importance in social affairs: the deliberate lie, and the hiding
and suppression of information. Statistical theory will have to evolve
methods accounting for such possibilities which at present are ignored,
Space precludes a full enumeration of even the main sources of errors,
As long as no quantitative measure is available, qualitative deseription
is important. In economie statistics one of the most troublesome errors
arises from the inevitable use of questionnaires. Furthermore, conflicts
with the interests of private business arise when information is demanded.
Sales prices and the volume of transactions are often closely guarded
secrets, so that statements about these are often worthless. This is
particularly true if the industry is highly cartelized or a monopoly.

Tlustrations from various fields, such as foreign trade, employment,
prices, indicate that the errors often are very large, even though they
can be ascertained only in a rough manmer. Variations in national in-
come and especially in its composition are known only with a high degree
of uncertainty. Figures such as these, however, enter significantly into
input-output tables. Thus the uses to which the tables can be put are
limited on two accounts: data and extent of numerical operations. The
economic models that can be set up on the bagis of information of this
type (either with large known errors or with errors only imperfectly
described) are naturally limited in scope and value.

Linear programming, or any other similar utilization of great masses
of economic data, cannot be expected to make decisive practical progress
until there is satisfaction that the data warrant the implied extensive
and costly numerical operations. Therefore current and future collec-
tions of data suitable for linear programming, whether for economie or
logistic purposes, should give particular attention to the numerical
determination of the accuracy of the data. This work, furthermore,
must be guided by the fact that large input-output tables are aimed at,
and that their use, whether aggregations take place or not, will require,
at any rate, many millions of numerical operations. These would lose
all meaning unless performed with data of a standard of reliability that
corresponds to the intricacy of the computations. Matrix inversions,
for example, are performed on matrices in which the entries in each field
are subject to errors (as must be the case). These errors often differ
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widely from one field to another and in many instances are even un-
known. They pose serious problems in addition to those of the inver-
sion of large matrices themselves. Linear programming requires nu-
merical operations of this kind.

In addition to observations made in statistical form there are eco-
nomic events and phenomena that do not (as yet) lend themselves to
statistieal, numerieal representation. An example ig offered by expecta-
tions, where whatever information becomes available is also affected by
error components. Variations in these data often have a direct bearing
on the accuracy of statistieal information which also should be taken into
aceount. Another type of difficulty lies with those, possibly highly
“accurate,” data that lack functional meaning, such as official exchange
rates of a country with exchange econtrol. These would falsify, for
instance, its foreign trade statistics and make them useless for mput-
output tables.

Economic measurements are peculiar in that they are most frequently
made of unigue phenomena. Sometimes the same event is observed
simultaneously by different observers who are, however, seldom scientifie
observers. The great sharpening of measurements in the natural sciences
is due primarily to the fact that the same event, say the veloeity of light,
has been measured time and again. But the transactions between two
industries in a given year are ascertained only once by a single agency
on the basis of questionnaires, with few internal checks that, if they exist
at all, rest on the same type of data. It is clear that statistical theory
has great tasks to accomplish in order to guide economists to the estab-
lishment of information suitable for such vast and important undertak-
ings as linear programming. Applications to military data suffer perhaps
less from these sources of errors, but this is probably compensated by the
large number of different activities that ought to be recognized ? for
logistic purposes.

In suromary, it is clear that the development of theories of linear
programming and the establishment of more adequate economic models
cannot progress very far without a thorough exploration of the nature
of the observations at our disposal.

2 When the number of activities is too large they have to be condensed to manage-
able proportions. This aggregation is itself a source of error and as yet is little
understood.
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Caaprer XVII

CONVEX POLYHEDRAL CONES AND
LINEAR INEQUALITIES *

By Davin GALe

A number of problems in econometries are concerned essentially with
solutions of systems of linear inequalities. A typical example is the
“linear programming’ problem in which it is desired to maximize a linear
form subject to linear inequalities. Another is the problem of determin-
ing the value and optimal strategies for a zero-sum two-person game. Be-
cause of their importance in econometrics, therefore, it seems desirable
to summarize the fundamental mathematical facts concerning such
systems of inequalities. This chapter represents an attempt to present
this material in as simple and unified a form as possible. -

As the title suggests, the theory of inequalities is equivalent to what
we have called the theory of polybedral cones. This theory is nothing
more than a geometric interpretation of the inequality theory. In fact,
the concept of polyhedral cone bears the same relation to systems of
inequalities as the notion of linear subspace does to systems of homoge-
neous equations. Indeed, systems of equations may in an obvious man-
ner be congidered a special case of systems of inequalities, so the resem-
blance between the two theories is not surprising. We shall éemphasize
the geometrie interpretation throughout, since it has been found that
it is often helpful to be able to “visualize” results in some geometric
form and that certain facts which seem obscure from the purely algebraic
point of view become “intuitively obvious” when looked upon geometri-
cally. For this reason we have tried whenever possible to state all re-
sults twice, first geometrically, as theorems about polyhedral cones, and
second algebraically, as properties of linear inequalities,

We have not attempted to make this chapter self-contained as far as
proofs are concerned. In particular, a large portion of the theory io
be developed will be derived from a fundamental theorem of H. Weyl,
the statement of which is given without proof. In this and similar
cases references will be given so that the reader desiring to derive all

* Eprror’s Note. For the relationship between Chapters XVII and XVIII,
see the Introduction.
287
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results from the beginning may refer to the appropriate place in the
literature.

Although no attempt has been made at mathematical completeness
as far as proofs are concerned, we have tried to list results in a logical
order and particularly to arrange the material in a form that will be
easy to remember. Section 1 is devoted to definitions needed for the
cone theory; in Section 2 the main properties of cones are obtained and
interpreted algebraically. The final section involves a few further re-
sults of the theory, and some applications are given to indicate how the
theory may be used in attacking specific problems.

1. NotaTioNs AND DEFINITIONS

We shall be dealing with an n-dimensional real vector space, V, which
may be thought of as Euclidean n-space. The vectors of V will be
denoted by small letters, u, 7, z, g, - - - , and will be thought of as column
vectors, while row vectors will be denoted by primed letters v, »', ete.
The inner product of two veetors, u and v, is then denoted by

n
Wy = v'u = ), uw,,
~

where u; and »; denote the ith components of « and ». Finally, we use
inequality signs as follows:

¥>v means u; > v; foralld

uZ v means u; = v; forallid,

“u>v means u = butu=nr

A. Conver cones. A set, C, contained in V is called a convex cone (1)
if ; 4 v is in € whenever »; and v, are in C, and (2), if whenever v is in
C and X is a nonnegative real number, A is in C.

Observe that C is convex in the usual sense in that, if a pair of points
lies in C, so does the segment connecting them. The cones as defined
here are all “homogeneous,” i.e., they have their vertices at the origin.
Speecial cases of cones are linear subspaces of V, including the whole
space and the origin alone.

B. Sum, negative, intersection, and polar cone. If C; and C; are con-
vex cones, the sum C; + Cy is defined to be the set of all vectors expressi-
ble as the sum of vectors from ¢ and C,.

The negative of a cone, C, is denoted by — C and consists of all vectors
whose negatives lie in C.
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If €, and C; are convex cones, the intersection Cy; ) Cg is defined to
be the set of all vectors belonging to both € and Cs.

If € is a convex cone, the polar cone C* is defined ! to be the set of all
vectors u such that w'v = 0 for all v ¢ C (for e read “belongs to”). We
may think of C* as the set of all vectors making a nonobtuse angle with
every vector of C.

We may verify at once that sums, negatives, intersections, and polars
of convex cones are again convex cones. Also we can easily check the
following simple relations:

(1% If € is contained in Cy, then €3 is contained in C7.
(2%) (G, +C)* =Ct NG
We shall make use of these relations later on.

C. Rays and halfspaces. Two special cases of convex cones are of
importance. We introduce them now.

A convex cone generated by a single vector v is called a ray or half-
line and is denoted by (v), where (v} is the set of all vectors which are
nonnegative multiples of ».

The polar cone of the ray (v) is called a halfspace and in our notation
is denoted by (v)*. It consists of all veetors w such that w'v = 0, or,
geometrically, of all vectors making a nonobtuse angle with ».

D. Polyhedral cones. We are now prepared to introduce the concept
of a polyhedral cone. We shall give two definitions which look quite
different but will later be seen to be equivalent.

DerviniTioN 1: C i3 a polyhedral cone if it is the sum of a finite number
of rays,

%
¢ = 2 @),

i=1

(' thus consists of all nonnegative linear combinations of the vectors

ol e, o,

DeriniTioN 2: C is a polyhedral cone if it is the intersection of a finite
number of halfspaces,

C = ﬁ (uf)*.
j=1

1 In Chapters IIT and XVIII the notation C* is used to designate the polar cone,
along with the notation C— = —('* for the negative polar cone.
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C is then all vectors making nonobtuse angles with each of the vectors
u', «++ , u™ 'These two definitions may be stated algebraically rather
than geometrically, as follows:

DerFintTioN 1': Let A be an n by k matriz. Then C is a polyhedral cone
if it consists of all vectors of the form v = Az, where z = 0 4s a vector of k
components.

We see at once the connection between Definitions 1 and !’ by taking
for the columns of A in Definition 1’ the vectors #* of Definition 1.

Derinrrion 2': Let B be an n by m matriz. Then C is a polyhedml
cone if it consists of all vectors v such that B'v = 0.

Letting the columns of B in Definition 2’ be the vectors u’ of Definition
2, we immediately sec the equivalence of Definitions 2 and 2’

Polybedral cones are, of course, special cases of convex cones, as we
see at onee from the definitions.

E. Linear space, dimension, and lineality of polyhedral cones. The
smallest linear space containing a cone, C, is denoted by [C] and can
also be described as the set of all vectors expressible as the difference of
vectors in C, ie., [C] = C 4+ (—C). The dimension (rank) of C is the
dimension of [C] or, equivalently, the maximum number of linearly
independent vectors in C. If C is described by the matrix A of Defini-
tion 1’, then the dimension of € is equal to the rank of 4.

We may also consider the largest linear space contained in C, denoted
by |C[. It consists of all vectors » such that both » and —vliein C, i.e.,
¢l =€ N (—C). The dimension of this space is called the lmwahty
of C. If Cis given by the matrix B of Definition 2’, it can be shown that
the lineality of C is n minus the rank of B.

The set of all vectors perpendicular to the polyhedra.l cone C is denoted
by C* and eonsists of all vectors » such that w'v = Oforallv e C. Notice
that C* is actually a linear subspace of V, rather than simply a polyhedral
cone, and is the same ag [C]*. '

¥. Supporting halfspace and hyperplane, and extreme halfspace. If C
is a polyhedral cone and u e C*, then (w)* is called a supporting half-
space for C. Stated informally, (»)* is simply a halfspace (through the
origin} containing C. The linear space (u)* is called a supporting hyper-
plane for C.  Now suppose that C is given by Definition 1, that is,

k
€= g %,

and let C have dimension n. A supporting halfspace (u)* is called an
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extreme halfspace if for n — 1 linearly independent vectors from among
the v* we have ws* = 0. In other terms, (4)* is an extreme halfspace
if (u)* contains n — 1 linearly independent vectors from among the »*.

With these definitions in mind we are prepared to discuss the prop-
erties of polyhedral cones.

2. Mamw ProrerTiEs oF PoLyaepral Cones

From this point on, since all cones discussed will be polybedral, we shall
omit the adjective and refer to them simply as cones. Proofs of most of
the statements of this section can either be found in Weyl [1935 or 1950], -
or can be obtained as simple consequences of his theorems. Most of the
results follow readily from the fundamental theorem (Hauptsatz) of
Weyl’s paper, which we now state in our own terminology.?

TaeorEM 1 {Weyl's theorem): If C is an n-dimensional cone in
n~-space, which is a sum of rays,

k .
C =3 @,

=1
then il is the inderseclion of its extreme halfspaces.
We restate this theorem in matrix form as follows:

THEOREM la: Let the cone C be all vectors of the form Azx, where z = 0
and A has rank n. Then there exisis a matriz, B, such that C is the sel
of all v for which B'v = 0; and each column of B is orthogonal to n — 1
Uinearly independent columns of A.

Notice that, if the cone C is the whole space, there are no supporting
halfspaces. On the other hand, if C is not the whole space, then, from
the above theorem, it must lie entirely in some halfspace.

If we visualize Weyl’'s theorem, say in three-space, the result should
appear extremely plausible. Nevertheless, the proof given by Weyl is
nontrivial,

Referring to the previous section, we see that Weyl's theorem shows
that every n-dimensional cone which satisfies (the sum) Definition 1
also satisfles (the intersection) Definition 2. The restriction that ¢
be n-dimensional can easily be removed, roughly as follows. If dimen-
sion C = k < n, we may apply Weyl’s theorem in the linear subspace
[C], obtaining a set of extreme halfspaces in [C] whose intersection is C.
It can then be shown that [C] is itself an intersection of halfspaces, and,

t A new proof of this theorem by M. Gerstenhaber will be found ¢lsewhere in this
volume {XVIII, Theorem 11].
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by combining these two collections of halfspaces, the desired result is
obtained. Thus C is again the intersection of halfspaces (though not,
in this case, of extreme halfspaces), and half of the equivalence of Defini-
tions 1 and 2 has been established. In order to prove the other half we
need the following important fact.

TusoreM 2: If C is a cone and C* is ils polar, then C** (the polar of
C*) is identical with C.

The proof of this theorem is very simple and we give it here.

Proor: First,  is contained in C**, for if z ¢ C then for any y e C*
we have x'y = 0; but this means x ¢ C**.

Second, C** is contained in C, for by Weyl’s theorem the cone €' is an
intersection of halispaces. Therefore, if v is not in C, there exists a half-
space (y)* such that C lies in (y)* and » does not. But since C lies in
()* we have z'y 2 0 for all z e C; hence y ¢ C*¥, whereas v’y <0, so v
is not in C'**.

The above may be thought of as a sort of duality theorem, showing
that the relation between a cone and its polar is symmetric. It is a
direct generalization of the well-known theorem of vector spaces that
the orthogonal complement of the orthogonal complement of a linear
subspace is the original subspace. At the same time, it has generaliza-
tions to cones which are not necessarily polyhedral and which lie in
spaces that are not necessarily finite dimensional. The proof given here
depends essentially on the fact that, given a cone, C, and & vector not
contained in it, there exists a hyperplane separating them. Generally,
in any space where this statement is true, we can prove a theorem analo-
gous to C** = C. Such extensions will be considered by M. Gersten-
haber in a forthcoming paper.

As an important consequence of Theorem 2, we have

CoROLLARY: Let %, o1, - , ¥™ be m + 1 vectors tn n-space with the
property that whenever 'v* = O for i =1, --- , m, then 2'1° 2 0. Then
° 1s o nonnegative linear combination of the veclors v*, - -- , o™

ProorF: Let
C =3 (.
i=1

The corollary asserts that, for every z eC* z»® 2 0. This means
#® ¢ C** and hence t° ¢ C and is therefore expressible as

0 = > A\, A =0

g=1
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Using Theorem 1, we easily show that evéry “intersection” cone is also
a “sum” cone as follows: Let ¢ = (x')}* N..-N (@™)*. Then, by
property (2*) of the previous section,

m *
C= [Z (uj)] .
j=1

But, by Weyl’s theorem, 3; (u?) = (#)* N--- N @*)* for some set of
vectors o', --+ , v*. Thus C = [(#)* N---N (*)*]* which again, by
(2*) and Theorem 2, gives

k . *]* k ..
c-{[zw|] -z
Fue] i=1
We have now shown the complete equivalence of Definitions 1 and 2.
We next list the important relations between the operations of sum,
intersection, and polar that now follow easily from the preceding results.

(a) The set of all cones is closed with respect to the operations +, 0, *,

This means that applying any of the operations to cones leads again to
a cone. This follows at once by using the appropriate definition, 1 or 2,
of a cone.

(b) (€1 + C2)* = C1 N C.

This is simply the repetition of property (2*), which holds for general
convex cones.

(e) (C: N Co)* = CT + C3.
@) = (),

Property (d) is simply the statement of Theorem 2. Property (c)
follows from (b) and (d), for

(€1 N Cy)* = (CT* N C3*)* = (CT 4 €5 = CF + (L.

The equivalence of the two definitions of a cone together with prop-
erties (a)-(d) are the fundamental tools used in proving theorems about
cones or linear inequalities. We can remember the four properties
easily if we think of the polar operation as a “mapping’ of the set of
cones onto itself which interchanges sums and intersections and which,
when iterated, takes each cone back onto itself. Notice that the linear
subspaces, as a subclass of the set of cones, are carried onto themselves,
and in this special case the operation * becomes the same as the opera-
tion *, and the properties (a)-(d) are classical properties of linear
subspaces.
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3. ForTHER PROPERTIES AND APPLICATIONS

A. Dimension and lineality. We shall show the relation between the
dimension and lineality of a cone as defined in Section 1E.

THrorEM 3: dim C + lin C* = n = lin € + dim C*,

Proor: Let y belong to the largest linear space in C*. Then y and
—y 'lie in C*, so that for any z ¢ C, ¥z = 0 and (—y)Yz = —(¥z) = 0;
henee y'z = 0, so y is in C1. On the other hand, if ¥ € €%, then y and
-y are in C*; therefore the largest linear space in C*, that is, ]C¥[,
isexactly Ct. Hence,if dim ¢' = p, then dim ¢ = 5 — p = dim |C*] =
lin C*, proving the first equality of the theorem. The second equality
follows from Theorem 2. (From this we get at once the expression in
terms of rank for the lineality of a cone given in Section 1E.)

B. Nonnegative cones. In the literature of econometrics and game
theory we frequently encounter theorems which, when interpreted
geometrically, are concerned with the conditions under which a cone
containg a positive vector, We shall show how such results are easily
derivable from our cone theory.

Dernrrion: The set of all vectors v = 0 is called the positive orthant
and denoled by P. Its negative, — P, ts called the negative orthant. The
tnierior of the positive (negative} orthant consists of all vectors v such that
v >0 (@ <0).

TnroremM 4: If the cone C contains no vector v < 0, then C* contains a
vector w > 0.

Proor: The cone €' 4+ P is not the whole space V and in fact contains
no vector interior to —P. For, if v = v; + v; < 0 and v € P, then
ve = 0 and hence »; < 0; therefore v; is not in C. By property (2)
of cones, (C' + P)* = C* 1 P* which contains a vector w = 0 by
property (4) of cones. 'The proof is complete once we observe that
P* = P, This is clear since P car be described as (i) the set of all non-
negative linear combinations of the unit vectors of ¥ or (ii} the set of all
vectors whose inner product with the unit vectors is nonnegative, and
these two sets are the polars of each other.

We obtain a simple geometric consequence of the above theorem as
follows. The hyperplane () is a supporting hyperplane for the cone
C + P (see Bection 1F). Tt is also a hyperplane separating C from — P
in the sense that C is contained in the halfspace (w)* bounded by (w)*
while —P is containred in the other halfspace, {—w)* bounded by

(~w)* = wt. Thus we may state
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Cororrary: If C is a cone which does not inlersect the interior of the
negative orthant, — P, then there exists a hyperplane separating C from — P.

The matrix statement of Theorem 4 is the following:
THEOREM 4a: If Az < 0 for no x = 0, then w'A = 0 for some w > 0.

Stated in this form, the above theorem is essentially the same as the
“theorem of the alternative for a matrix” of von Neumann and Morgen-
stern [1947, p. 141] and also Ville’s lemma [Ville, 1938].

If we state the eontrapositive (negative converse) of Theorem 4 and
interchange the roles of C and C*—permissible because of property (d)—
and P and — P, we obtain

TaeoreM 5: If the cone C contains no vector v < 0, then C* contains a
vector w > 0.

This fact is used in some work of Xoopmans [I1I], and a sharpened
form is also used by Gale, Kuhn, and Tucker [XIX]. The reader should
be able to verify that the geometric interpretation of the theorem is the
following:

CoroLLarY: If the cone C does not intersect the negative orthant, — P,
then there exists a hyperplane which separates C from — P whose normal
18 interior to P.

In matrix form Theorem 5 becomes

TasoneM ba: If Az < O for no x, then there exists a w > 0 such that
wAd =0,

C. The main theorem of the two-person game. From the properties of
convex cones we may quickly obtain a geometric proof of the existence
of a value and optimal strategies for a finite two-person game. In this
section we shall describe the geometric proof. The reader should have
little difficulty in translating the ideas back into algebra.

Without concerning ourselves with the game theoretic interpretation,
we state the main theorem in the following form:

TaeoreM 6: If A is any m by n matriz, there extst o scalar M and vectors
$=(x1,"',$m)andy=(yh"‘:yn)suc’”hat
ey T,y >0,

n

(2) ;xi=2%"=1:

j=1
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n
z'Av =\ forall »> 0 suchthat 3, 0;=1,
j=1
3) m
wAy £ forall »>0 suchthat >, u; =1
i=1
To see how this theorem may be proved, let us denote by aq, <+« , @»
the column vectors of the matrix A. These vectors can be located as a
finite set of points in m-space. Let K denote the smallest convex set
containing these points. This set consists of all points of the form
Y 7-1a:v;, where the »; are nonnegstive scalars whose sum is 1. Now
suppose that we denote by [A] the vector in m-gpace, all of whose com-
ponents are equal to the secalar \. The set K), then denotes the set
obtained from K by subtracting X from each point in K. Geometrically
this corresponds to “sliding” K a distance —X\ along the line making
equal angles with each coordinate line. For A large we see that K will
lie entirely in the negative orthant, — P, while for A small K will lie in
P. Tt follows that we may find a A = A such that K, “just touches”
—P (i.e., Ap is the smallest value of M for which K intersects — P).
Since K,, does intersect — P, there exists a vector

"
v o= Ea,“yj—[?\]§0,
i=1

and » can be written as Ay — [\], wherey = (y, -+ , y») satisfies condi-
tions (1) and (2) of Theorem 6. If then we have u > Oand 37 qu; = 1,
we obtain m

WAy — W\l = w'dy — A (2 u,-) <0,

t=1
or

WAy <)\

which 18 the second part of condition (3) of Theorem 6.

Now observe that K,, cannot intersect the interior of — P, for this
would mean that we could decrease X and still preserve contact between
K) and —P. Likewise, the cone C subtended by K, will not intersect
—P. Therefore, using the corollary of Theorem 4, we can find a
hyperplane which separates ¢ from —P. Let x be a normal to this
hyperplane directed away from —P. We then have #/(—p) < 0 for
—pe—P or 2p >0 for all peP, whence x > 0. We also have
z'u > 0 for all u e K, or ©’Av — z'[A] 2 0 for all v satisfying condition
(3) of Theorem 6. We may also assume that

m
Z:c.;=1.

=l
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If this is not the case, we may take a new normal, 2/3 ;z;; thus we obtain
z'dv > X\, which completes the proof.

D. Application to linear programming. A useful result on cones,
which, however, does not seem to follow from our previous results, is
the following (essentially Theorem 2 of Weyl [1935, 1950]):

TasorEM 7: If C = 3 7%, (v;) is a cone, and v lies in C, then it is possible
to write v as a positive linear combination of not more than n vectors from
among the v;.

This theorem has applications to problems in linear programming. In
particular, it is used by Dantzig to show that, if “feasible solutions” exist,
one can be found depending on not more than n points. The proof is
found in Chapter XXI. Stated in matrix form the theorem reads:

TaeoreMm 7a: If v = 2’A, where x > 0, and A is an m by n matriz,
m > n, then there exists an & > 0 such that v = &' A and af least m — n
components of & are zero,



CaaprEr XVIII

THEORY OF CONVEX POLYHEDRAL CONES *

By MurraY GERSTENHABER !

It is assumed that the reader of this chapter is familiar with certain
fundamental topological concepts, such as those of open and closed sets,
and with the elementary theory of finite dimensional vector spaces.
Only finite dimensional Euclidean spaces will be considered here; points,
sets, and subspaces will be points, sets, and subspaces of finite dimen-
sional Euclidean spaces, though the theorems and methods of proof are
valid for some more general spaces. The reader who is unfamiliar with
topology or vector space theory is referred to Lefschetz [1949, Chapter I}
and Halmos [1948].

1. NoraTions aNp DEFINITIONS

1. E® represents n-dimensional Euclidean space. Points in E* will
be denoted by lower-case italic letters, sets by capital italic letters, and
real numbers (scalar multipliers) by lower-case Greek letters.

0 is both the real number 0 and the zero vector; the origin of E™.
a ¢ 4 means ¢ is a member of A.

a ¢ A means a is not a member of 4.

A < B means A is contained in B.

6. A < B means A is properly contained in B, ie., A C B and
A #B.

7. A N B is the infersection of A and B, i.c., the set of all points
which are members of both A and B.

bl il o

* Eprror's Nore. This chapter was originally submitted in a somewhat longer
version containing full proofs of the several statements summarized in Theorem 12
below. The condensation in the present version was made to avoid duplication
between chapters in this volume, For the relationship of this chapter to Chapier
XVII see the Introduction to this volume.

1 The anthor wishes to express his indebtedness to T. C. Koopmans for many
conjectures which have become theorems in this chapter and for the statement and
proof of Theorem 32. The author also wishes to express his indebtedness to M. L.
Slater for the statement and proof of Theorem 25, the idea of which has been em-
ploved to make the proofs of several theorems considerably shorter than those
originally given by the author.

298
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8. A U Bis the union of A and B, i.e., the set of all points which are
members of either 4 or B.
8. (a, b) is the inner (scolar) product of ¢ and b.

10. A* is the orthogonal complement of A.

11. A% is the positive polar of A, i.e., the set of all points b such that
(b,a) Zz0forallain A.

12. A~ is the negative polar of A, i.e., the set of all points b such that
(d,a) < O0forallain A,

The following statements are obvmus At c A"‘ At c A~ AL
ATNAT (- = (AN =A4—;(-4)~ = —(A") e

13. )\1A1 +-- -+ N4, is the seb of all points May +-- -+ 4 Na, with
a; € A,—.

14. {a} is the set of all points Aa. Such a set will be called a line.
If ¢ is a point in E™ and a # 0, then {a} is a one-dimensional subspace
of E™.

15, (a) is the set of all points da with X = €. Such a set will be called
a halfline.

By definitions 14 and 15, the set consisting of 0 alone is both a line
and a halfline, and all lines and halflines contain 0,

16. int A is the inderior of A.

We shall convene that in E° (which contains only 0), 0is open and its
boundary is vacuous.

. | positive . . .
17. a is a ) .. lnear combination of a;, --- , a, if a =
strictly positive
h 20
Aap 4+ -4 May Wit {
11 A; > 0 and all a; different from 0.
- cmm ] + - »
18. a is a{ . linear combination of @y, -+ , ar if @ =
strictly econvex

A + +R .th{igoand)\l-'---._l_kral
a . W
101 vy Wi M>Oand A -0 kA, =

19. @ is a proper posilive linear combination of a;, --- ,a, ifaisa
strictly positive linear combination of a;, - -+ , @, and some a; is not a
positive multiple of a.

20. a is a proper convex linear combination of a4, - - - , a, if a is a strietly
convex linear combination of d;, - - - , a, and some g; is not equal to a.

The set of all eonvex linear combinations of ¢ and b is the line segment
joining them. The set of all proper convex linear combinations of a
and b is the open line segment joining them.
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21. A set is convex if with every pair of points @ and b it contains the
line segment joining them.

It is obvious that the interseetion of any number of convex sets is
convex and that all sets of the form AT, A~, or A+ are convex.

29. The convex hull of A is the intersection of all convex sets contain-
ing A. The convex bull of 4 is the smallest convex set containing 4 ;
any convex set containing A contains the convex hull of A. The convex
hull of A will also be called the convex set spanned by 4. If B is the
convex hull of A we shall say that A spans B.

23. A convez cone is the convex hull of a set of halflines.

It is obvious that, if a set A contains with every pair of points ¢ and
b the point ¢ + b and all points Aa with A = 0, then 4 is a convex cone.

24. A convex polyhedral cone is the convex hull of a finite set of halflines.

25. A is a subcone of B if A and B are convex cones and 4 C B.

A subcone of a convex polyhedral cone need not be polyhedral.

26. An extreme point of a convex get is one whieh is not a proper convex
linear combination of any two points of the set.

1t follows immediately from the definition that an extreme point of a
convex set is one which is not in any open line segment contained in the
set. Therefore, if an extreme point is removed from a convex set, the
set is still convex; an extreme point is not in the convex hull of the remain-
ing points of the set.

27. (a) is an extreme halfline of a convex cone if ¢ is not a proper posi-
tive linear combination of any two points of the cone.

A convex cone remalns convex after removing any extreme halfline;
an extreme halfline of a convex cone is not in the convex hull of the
remaining halflines of the cone.

The convex hull of a finite sef of points is the set of all their convex

linear combinations. The convex hui of halflines (a;), --- , (@) is
the set of all positive linear combinations of ay, *- - , a,, which is {a;) +
oo (ar)-

If A and B are convex polyhedral cones, it is trivial that A - B
(see 13 for definition; Ay = Ay = 1) i3 a convex polyhedral cone, but not
trivial that A N B is a convex polyhedral cone. This is, however, im-
plied in. Theorem 12 below.

28. A framé of a convex polyhedral cone is a finite set of halflines which
span the cone and such that no halfline of the set is in the convex hull
of the others.

It is obvious from the definition of a convex polyhedral cone that it
always has at least one frame. Generally, however, the frame is not
unique, as in the case where the cone i1s a whole Euclidean space of
dimension greater than one. Any frame of a convex polyhedral cone
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must contain all extreme halfiines of the cone if there are any, but the
halflines of a frame need not be extreme as the same example shows. It
follows that a convex polyhedral eone can have only a finite number of
extreme halflines.

29. D{A} denotes the intersection of all subspaces containing 4.
D{A} is the smallest subspace containing 4; any subspace containing
A contains D{A}. D{A} will be called both the dimensionality space
of A and the subspace spanned by A. We shall say here too that 4 spans
D{A}. When “span” ig used, the sense will be clear from the context.

30. L{A} denoctes the convex hull of all subspaces contained in A.
L{A} is a subspace such that any subspace contained in 4 is contained in
LfA}. If 4 is convex, L{A!} is contained in A. L{A} will be called
the linealify space of A.

31. The relative inlerior of A is the interior of A when A is considered
as embedded in D{A}. The relative interior of A will be denoted by
“rel int A

It is obvious that if A is a convex set in £”, then A has an interior if
and only if D{A} = E®. Butif A is not empty, then rel int A is not
empty.

32. The relative boundary of A is the boundary of A when A is con-
sidered embedded in D{A}.

33. d{A} is the dimension of D{A}. d{A} will be called the dimen-
sion of 4.

34. 1{A] is the dimension of L{A]}.

It is easy to see that L{A™} = L{4A~} = A%, This may be demon-
strated as follows: It is obvious that L{A*} = —L{d™}. But L{4™}
and L{A ™} are linear spaces, hence equal fo their negatives. Therefore
L{A*} = L{A™}. Since A¥ and A~ are convex, L{AT} < AT and
L{AT)c A7 ButL{AT) = L{A 7}, soL{At) c AT N A~ = AL
On the other hand, A" is a subspace contained in A% and therefore
At c L{47"}. By comparing the inclusions, 4+ = L{41}.

35. If A is a convex polyhedral cone and 1{A} = 0, A will be said to
be pointed.

36. If A is a convex polyhedral cone embedded in E®, and 4 = E®,
then 4 will be called solid.

To determine if a cone is-pointed it is not necessary to consider the
space in which it is embedded; but to determine if it is solid, this is
necessary.

37. A halfspace is a set of the form ¢ with a # 0.

If @ 5 0, then the halfspace o™ is bounded by a hyperplane to which
(@) is a normal at the origin. This hyperplane is a'; if @ ¢ B, it is a
subspace of E” of dimension n — 1.
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2. InTERIORS AND PROJECTIONS

Let A be a convex set in-£™ (with n > 0), a be a point of 4, and u;,

-, Uy be any n linearly independent points in £®, Then uy, -+ , u,
span E®, and it is trivial to show that e is in the interior of A if and only
if there exists a A > 0 such that the points & -+ Ay, -« , a + Au,,
G — Mug, -o , @ — Mg, areallin A, Since ¢ = Y5(a + Aug) + 14(a —
Muy), if @ is in the interior of A then o is not extreme. All extreme points
of A are on the boundary of A. If ¢, --- , v, is any finite set of points
and ¢ e int A, then there exists a X > O such that a + My, - -+ , @ + M,
@ — My, ~+-,8— Ay, areallin 4.

It is easily shown that if A is a convex cone then the following proposi-
tions are equivalent:

{a) 0 is in the relative interior of 4,

{b) the relative boundary of A is vacuous,

{¢) A is a subspace.

TureorEM 1: If A is a convex polyhedral cone and (a;); - - , (a,) is a
frame of A, then the relative interior of A is the set of all poinis \ay +
et AN, with A >0 =1, -, 1)

Proor: We may agsume that A is embedded in D{4}. Then we must
prove that the set of all points ey +---+ Xa, with \; > 0 (£ = 1,
.-+, 7) is the interior of 4. Let d{4} = n, and assume that A4 is em-
bedded in E". '

It will be shown (1) that the set of all points A\ey + -+ Ma, with
A; > 0 is contained in int A, and (2) that int A is contained in the set
of all points Ma; +-- -+ Ma, with A; > G,

(1) Since d{A} = n there must exist » linearly independent points
among the a;. By reordering the a; we may assume that a4, --- | a,
are linearly independent. Leta = May +---+ Na with\; > 0 = 1,

-, 1), and let X be the smallest of the X;. Then the points ¢ + \a,,

© @4 Mg, @ — My, -+- ,8 — Mg are allin A. Therefore ¢ e int A.
(2) Supposea eint A. Then there exists a X > 0 such that the points
bi=a—My; =1, +-- , 7)are all in A. Then a = (\/rla; +---
+ Ov/ra. + 1/r)by +-- -+ (1/r)b,. But since (ay), -+ , (&) is a
frame of 4, 5; = 1, --- | ) can be expressed as a positive linear com-

bination of the a;. Therefore a has been expressed in the form a =
Rlal +"'+ Aplir with A > 0 (z = ]_, . ,lr)_

TueoreMm 2 (corollary): If A is a convexr polyhedral cone in E® and if
n = 2, then any extreme halfline of A is in the boundary of A.
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TrroreM 3 (corollary): If A is a convex polyhedral cone, a crel int A,
and b is any point in A, then a 4 berel int A,

It is in fact easily shown that if 4 is a convex cone, @ e rel int A, and
b is any point of 4, then a + b erel int A,

TrEOREM 4 (corollary): If A and B are convex polyhedral cones such
that B C A, then B intersects the relative interior of A if and only if D{B)
intersects the relative interior of A.

Proor: If B intersects the relative interior of 4, then certainly so
does D{B}. Conversely, suppose that D{B} intersects the relative
interior of A. Let (b1), -+ , (b,) be a frame of B, and (ay), - , (a,)
be a frame of A. Then Mby +-- -+ MNby = ey +-- -+ ps0, for some
set of ; and g, with u; > 0 (5 =1, -+ , s). If all the A; are negative,
then 0 = —Mby —- -~ — Nb, + may +- - -4 s, and 0 is in the rela-
tive interior of A. B contains 0, so B intersects the relative imterior of
A. If some of the \; are positive, we may suppose A, -+- , \, > 0.
Then klbl +---4 lpbp = ma +---+ Mg ~— Rp+1bp+1 —er— )\,-b,-,
and Mby +-- -4 Ab, is in the relative interior of 4, so B intersects the
relative interior of A.

If E* is an n-dimensional Fuclidean space and S an r-dimensional sub-
space, there exists a natural mapping from E™ onto an (n — r)-dimen-
sional Euclidean space which maps 8 into 0, is continuous, linear, and
sends open sets into open sets. This (n — r)-dimensional space may be
taken to be S* and the mapping to be the projection on §*. If A isany
subset of £, the image of A under this mapping will be denoted by 4
mod S. That the image of A has the property P and a relation E exists
between the images of subsets A and B of E® will be denoted; A has
property P mod S, and the relation B exists between A and B mod S.

If 7" is & linear subspace of E® mod 8, and if T is the set of all points
of E® that map into 7", then T is a linear subspace of E*, T contains S,
and the mapping which sends E" onto E® mod 8 mod T is the same ag
that which sends E® onto E” mod T. If, in particular, 7’ is a hyper-
plane of E" mod 8, then 7 is a hyperplane of E®.

if A’ is a halfspace of E™ mod 8 and H the set of all points of E® map-
ping into H', then H is a halfspace of E®.

If ay, -+, a, are points of E™, both the set of all their convex linear
combinations and the set of all their positive linear combinations are
cloged. Therefore a convex polyhedral cone ig closed. Its boundary
is vacuous if and only if the cone is the entire space. If A is a convex
polyhedral cone in ", then A mod S is a convex polyhedral cone
spanned by the images of the halflines which span A. These images are
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halflines in £” mod 8. Therefore A mod § is closed. If A is not
polyhedral, A mod S may not be closed. If (a’) is any halfline of A
mod S, there is a halfline (a) in A which maps into it. For, since 4 mod
S contains (a’), it contains the point a’. Therefore o' is the image of
some point a in A, and (a) mod S = (o).

3. RELATIONS BETWEEN CoNVEX PoLYHEDRAL CONES AND SUBSPACES

TrEorEM 5: If A is a convex polyhedral cone, then A mod L{A} is
pointed.

Proor: If A mod L{A} were not pointed, it would contain a linear
subspace of dimension at least one. Therefore it would contain a pair
of halflines, (¢") and —(a’), with o’ #£ 0. Let ay and a, be points of 4
whose images are a’ and —a’. Then a; 4+ a3 = 0 mod L{A}, whence
gy + az e L{A}. Since L{A} is a subspace contained in 4, —~a; — az ¢
A. But then —a; ¢ A. Since both a; and —a, are in 4, a; e L{4},
whenece a; mod L{A} = 0. But q; mod L{A} = ¢' # 0, contrary to
assumption.

THEOREM 6 (corollary): Let A be a convex polyhedral cone and a and b
be points of A. Then a + beL{A} implies ae L{A} and be L{A}.

Proor: Since ¢ = —bmod L{d}, and A mod L{A} is pointed and
contains both a mod L{A} and b mod L{A}, it must be that a = 0
mod L{A}. Therefore e e L{A}. Likewise, beL{A}.

Tt follows immediately that, if a strictly positive linear combination of
ay, -+ ,a, 8in L{A} thenag;eL{A} =1, .-+ , 7).

TurOREM 7 (corollary): If A is a convex’ polyhedral cone and (a1}, -- -,
(a,) is a frame of A, then L{A} is the convex hull of those (a;) which are in
1{A4}. '

TaeoneM 8: Let A be a conver polyhedral cone, (21), --- , (a,) be a
Jrame of A, and suppose (a1), -+ - , (as) ¢ L{A}, (a541), -+, (a:) e L{4}.
Then (@) mod L{A}, .-, (a;) mod L{A] are all distinct and are extreme
halflines of A mod L{A}.

Proor: Set g; mod L{d} =b; E =1, ---, 5). Suppose {b;) not ex-
treme or not distinct from the other (b;). Then by = Mby + -+« -+ Nobs,
with X; = 0 and at least one of the A; greater than zero. There are
three cases to consider:

Case 1: M < 1. Then (1 - )\l)bl = kgbg +---+F }t_,bs, whence (1 -
AM)ay = Azag +-- -+ Mg, - ¢, where cisin L{A}. By Theorem 7, ¢ is
a positive linear combination of a,,4, - -+ , a,. Therefore g, is a positive
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linear combination of the other a;, which contradicts the assumption
that (a,), --- , (a,) is & frame.

Casg 2: %y = 1. Then Abs 44+ Nb, = 0. Of the Ay, -+ |, A,
at least one is not zero. We may assume that it is \s. Then 4 mod
L{A} contains both (b2) and — (bs) and is not pointed, which contradiets
Theorem 5. :

Cask 3: M\ > 1. Then A mod L.{A} contains both (by) and —(b;)
and is not pointed, which again is a contradiction of Theorem 5.

THEOREM 9 {(corollary): A pointed convex polyhedral cone is spanned
by its extreme halflines. Its frame is therefore unique and consisis of the
extreme halflines of the cone,

If A is a eonvex polyhedral cone which is not pointed, the halflines
of a frame of 4, though not uniquely determined, are determined up to
an element of L{A4}.

Turorem 10: Let A be a pointed convex polyhedral cone and (a) be an
extreme halfine of A. Then 1{A — {(a)} = 1, L{d — (a)} = {a}, and
A mod {a} is pointed.

Proor: Since A — (&) contains {a}, {4 — (a)} = 1. Suppose
{4 — {a)} = 2. Then A — (a) contains a line {b} distinet from {a}
and with b # 0. Therefore there exist points a;, as € 4, and real num-
bers A, A such that a; — e = b, az — hsa = —b. Neither a; nor a,
may be zero or a scalar multiple of a, for then b would be a multiple of a
and we would have {a} = {b}, contrary to assumption. Adding the
equations, wehave gy + a; — (M 4 Mo = 0, 0ray - az = (\ + Me)a.
It must be the case that X; + \o is positive, for a; + ¢z isin 4. There-
fore, if My + Ay were negative, —a would be in A, and A would not be
pointed; and if A, + Ny were zero, 4 would contain both @, and —a;
and would not be pointed. But, if X -+ Ag is positive, @ can bé ex-
pressed as a proper positive linear combination of a; and ap, contrary
to the assumption that a is extreme. Therefore 1{4 — (a}} = 1.

Since 1{d — (a)} = 1, and A — (a) contains {a}, L{4d — (a)} =
{a}. Since (a) mod {a} =0, 4 mod {a} = (4 — (a)) mod {a} =
(A — (a)) mod L{A — (a)}. Therefore, by Theorem 5, A mod {a} is
pointed.

It is easy to show in a similar manner that, if 4 is a pointed convex
polyhedral cone and a ¢ 4, then A — (a) is still pointed, and, if a e A
but () is not an extreme halfline of 4, then 1{A — (a)} > 1.

TraeoreM 11 (Minkowski, Weyl): Let A be a convez polyhedral cone in
E" with d{A} = n. Then A is the iniersection of a finite number of half-
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spaces such that the hyperplanes bounding them each contain al least n — 1
linearly independent points of A and are spanned by halflines of any frame
of A.

Proor: It will be shown first that, if the theorem is true for pointed
convex polyhedral cones, it is true for all convex polyhedral cones, and
then it will be shown that the theorem is true for pointed convex poly-
hedral cones.

Suppose that the theorem is true for pointed convex polyhedral cones,
and let A be an arbitrary convex polyhedral cone in E” with d{A} =
Then the theorem is true for A mod L{A}, which is pointed. Suppose
1{4} = s. Then there exist halfspaces, H}, --- , H,, in E" mod L{4}
such that Hy N --- N H, = A mod L{4}, and such that the hyperplanes
bounding the H. each contain n — s — 1 linearly independent points of
A mod L{A} and are spanned by halflines of the frame of A mod L{A}.
Let Hy, - -+ , H, be the sets of all points mapping into Hy, --- , H., re-
spectively, let S; be the hyperplane bounding H;, and let S; be the hyper-
plane bounding H; ( = 1, --- , r). Then the H; are halfspaces in E™,
each S; containg L{4}, and S; mod L{A} =8 G =1, ---, 1)

By assumption, S; contains n — s — 1 linearly independent points of
A mod L{A}; call them @] ;, *+ , @] n_puy. Letas 1, - - , @ n—s_i
be points of 8; whose images are a; 1, -+ - , & n—a—1. Sincel{A} =
L{A} contains s linearly independent points; call them a,_,, **- , @n—;.
But L{A} < 8; Therefore S; contains all the points a; ¢, --- ,
Qi n—s—1) On—gy *** , Gn_y. Lhis set of n — 1 points must be linearly
independent. For suppose Mai, 1+ Aps—18i, nes—1 + Mslln—s
+ -+ Aa—18,—; = O for some set of A\; not all zero. It cannot be

the case that Ny =N =---=X,,_; =0, for then a,—s, -+ , Gny
would be linearly dependent contrary to assumption. Since a; = 0
mod L{A}, j——n—s -1, andmk—a,;,modL{A},wemust

then have >\laa 1 +---+ hn-—a—lat n—g—1 = 0 whencea, L' a, n—s—1
are not linearly independent, contrary to assumption.

Let (81), -+, (bp) be any frame of A. By Theorem 7 we may assume
that (by), - -+, (by) span L{A}, and by Theorem 8 (b,.1) mod L{4}, -
(by) mod L{A}] are all distinet, extreme, and span A mod L{4}. 4 mod
L{A} is pointed by Theorem 5 and therefore has a unique frame by
Theorem 9; therefore (b, ;) mod L{A}, --- , (b;) mod L{4} is the
unique frame of A mod L{A}. Set (b;) mod L{d} = &) (j = p + 1,

-, g). Bince the theorem is assumed true for pointed cones, 8! is
spanned by a set of halflines from the frame of 4 mod L{A4}, say (b)),

, (b)), ie., S = (b)) +- -+ (b.,). But then it is clear that
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8; = (b)) +---+ (b;,) + (b1) 4+ - -+ (b,), whence S; is spanned by a
set of halflines from the given frame of A.

Now suppose¢ aeH, N---N H,. Then ¢ mod L{A}eH; mod
LiA} N---N Hymod L{A} = H; N---N H = A mod L{4}. There-
fore there exists a point b in A such thate = bmod L{4},ora — b =ce
I.{A}. Butthene =0b-+ced. Therefore H; N---N H, c A. But
A mod LIA} C H; (i =1, --- , r). Since H; is the set of all points
mapping into H;, ACH; (6 =1, --- , r). Therefore A C H,; N---
N H, whence A = H; N---N H,.

It has therefore been demonstrated that, if the theorem holds for
pointed convex polyliedral cones, it holds for all econvex polyhedral
cones. In the remainder of this proof it will be assumed that 4 is
pointed.

The theorem will be proved by constructing a set of halfspaces such
that the hyperplanes bounding them each contain n — 1 linearly inde-
pendent points of 4 and are spanned by halflines of the frame of 4,
and such that the halfspaces themselves each contain 4; but if p is a
point not in A, at least one of the halfspaces does not contain p. Since
there are only a finite number of halflines in the frame of 4, the set of
halfspaces so constructed must be finite. Tt is clear that their inter-
section is A.

If A is embedded in E', and d{A} = 1, the theorem is trivial. As-
sume that the theorem is true if A is embedded in E*~, and d{A4} =
n — 1. Tt will then be proved true when A is embedded in E* and
d{Ad} =n. We may assume n = 2.

Let pbe apoint not in A. Then it will be shown first that there exists
a halfline (@) in the frame of A such that p ¢ A mod {a}. Since pe A,
A — (p) is still pointed. Let (¢) be an extreme halfline of 4 — (p),
and let (a) be different from —(p). Then (¢) must in fact be in 4 and
therefore in the frame of A. For a = ¢ — up for some ¢ in 4 and dif-
ferent from zero, and some x = 0. If x % 0 then (a) is not extreme.
Therefore @ = ce A. But then p¢A mod {a}. For pe A mod {a}
implies that for some N, p + M =beA. If A £0, then p e 4, which
is a contradiction; and if X > 0, then (¢} is not extreme in 4 — (p),
which again is a contradiction.

A mod {a] is of dimension n — 1, and is embedded in £* mod {a}, an
(n — 1)~dimensional Euclidean space. By the inductive assumption,
the theorem is true for A mod {a}. Since p ¢ A mod {a}, there exists
a halfspace H’ of E™ mod {a} such that 4 mod {e} € H’, p mod {a} ¢
', and such that the hyperplane bounding H’' is spanned by halflines
of the frame of 4 mod {a} and contains n — 2 linearly independent
points of A mod {a}. By Theorem 10, A mod {a] is pointed and there-
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fore has a unique frame. Let (a), (a2), --- , (a:) be the frame of 4.
Then (ay) mod {a}, --- , (a) mod {a} must be the frame of A mod {a).
We may suppose that the halftines are so ordered that the hyperplane
bounding A’ is spanned by {(¢2) mod {a}, - -, {2n—1) mod {a}.

Let H be the halfspace of E" whose image is H'; H mod {a} = H'.
Then the hyperplane bounding H is spanned by (), (as), -« , (a,—1).
Since the hyperplane bounding H’ contained n — 2 linearly independent
points of A mod {e}, the hyperplane bounding H must contain n — 1
linearly independent points of A, for it confains . Obviously 4 ¢ H,
and since p ¢ H mod {a}, certainly p ¢ H. Since for every p ¢ A such a
halfspace H may be found, the theorem is proved.

If A is solid, the arguments of the above proof do not hold. It is
natural to make the convention that an intersection containing no factors
shall be the whole space. Accordingly, if 4 is solid, 4 is the intersection
of zero halfspaces.

If A i3 a eonvex polyhedral cone in E®, and d{4} < n, it is obvious
from Theorem 11 that 4 is the intersection of a finite number of half-
spaces of E™ such that the hyperplanes bounding them each contain at
least d{A} — 1 linearly independent points of 4, but it will no longer
be the case that the hyperplanes are spanned hy halflines of a frame of 4.

Theorem 11 has numerous important corollaries due to Minkowski
and Weyl. These are given in Theorem 12 in forms due mainly to
Gale. Most of their proofs may be found in Chapter XVII, the re-
mainder supplied by the reader.

TreoreM 12: (1) If A and B are convex polyhedral cones, then
(a) A € B implies BY* € A+,
(b) A < B tmplies Bt < AT;
(e) ATt = 4;
d) (A + B)* = AT N BY;
() (4 N Bt = A+ + BT,
(f) statements (a) o (c) hold when negative polars are substituted for
positive polars; '
(€ ANA-=0. (Ingeneral A N At = 0 ¢s false.}
(2) If A isa convex polyhedral cone, then D{A*} 4+ L{A} = E™, whence
d{4A7) 4 1{A} = =n.
(3) (a) A is a convex polyhedral cone if and only if AV is a convez
polyhedral cone.
(b) A is a convex polyhedral econe if and only if A is an intersection
of a finile number of halfspaces.
(e} The intersection of two convex polyhedral cones is a convex poly-
hedral cone,



CHAP. XVIII] THEORY OF CONVEX CONES 309

Tueorem 13: Let A and B be conver polyhedral cones. Then A — B
= D{A + B} (= D{A} + D{B}) if and only if the relative interior of A
inéersects the relaiive interior of B.

Proor: Suppose A — B = D{A + B}. Let g, be in the relative inte-
rior of A and b; be in the relative interior of B. Then, since —a; + b; €
D{A + Bj, there exist points a; ¢ A and by ¢ B such that a, — by =
—a; + by, But then a; + a3 = b; - by.  Since a; + a; is in the rela-
tive interior of A, and b; - b, is in the relative interior of B, the rela-
tive interior of A intersects the relative interior of B.

Suppose that the relative interior of 4 intersects the relative interior
of B. Let (a1), -+ , (@) be a frame of A. Then, for some set of
M >0, Mqag +-- -+ Moy e B Therefore —M\ay — -+ = Na,ed — B,
But then —M\aq, - -+, —Na. are all in 4 — B, whence —ay, -+, —a,
are all in A — B. Therefore D{A} C A — B. Likewise, D{B} C
A — B, whence D{A} + D{B} © A — B. Therefore, since D{4 + B}
=D{A} + D{B}, D{A 4+ B} Cc A—B. Butd — Bc D{A + B}.
Therefore, A — B = D{4 4+ B}.

It follows, as a special ease of Theorem 13, that, if 4 and B are convex
polyhedral cones, and B intersects the interior of A, then 4 — B is solid.

TueorEM 14 (corollary): If A and B are convex polyhedral cones, and
if B C A, then a necessary and sufficient condition that B be in the relative
boundary of A isthat 1{A — B} < d{4},4.e,thatd — B =« D{A},anda
necessary and sufficient condition that B intersect the relative interior of A
tsthat 1{A — B} = d{A}, i.e., that A — B = D{4}.

THEOREM 15: If A is a conver polyhedral cone in E™, then the mapping
which sends E" onto E™ mod L{A} maps the relative inierior of A onto the
relative interior of A mod L{A} and maps the relative boundary of A
onto the relative boundary of A mod L{A}.

Proor: It is sufficient to assume that 4 is embedded in D{A}, ie.,
that D{A} = E". Then the relative interior of A is the interior of 4,
and we shall prove that the interior of A is mapped on the intertor of 4
mod L{A} and the boundary of A is mapped on the boundary of 4
mod L{A}.

Since the image of an open set under the mapping which sends E™
onto E® mod L{A} is an open set, the interior of A is mapped on the
interior of A mod L{A}. Therefore it is only necessary to show that
no point in the boundary of 4 is mapped into the interior of 4 mod
L{4}.

Suppose that ¢ were a point on the boundary of A which is mapped
into the interior of A mod L{A}. SetemodL{A} = b, A mod L{A} =
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B. Then, since b is in the interior of B, B — (b} is solid, or 4 — (a)
mod L{A} = E" mod L{A}. Butthen A — {(a) + L{A} = E". Since
L{A} A, A — (a) = E*. Hence ¢ is in the interior of 4, contrary
to assumption.

TuroreMm 16: Let A be a convex polyhedral cone in E*. Then

(1) if A is not solid, i.e.,if A 5= E™, then L{A} is on the boundary of A;

(2) if d{A} = nand 1{A} = n — 1, 1.e., if A is a halfspace, then any
frame of A contains exactly one halfline which is not in L{A}. This half-
line 1s in the inderior of A;

3) if d{A} < n, orl{A} < n — 1, then all the halflines in any frame
of A le in the boundary of A.

Proor: (1) If A # E* then the dimension of E* mod L.{A} is at least
one. Since 4 mod L{A} is pointed, 0 is in the boundary of A mod L{A}.
Therefore, by Theorem 14, L{A4} is in the boundary of A.

(2) If d{A} = n, and 1{4} = n - 1, then 4 mod L{4} is a halfline
in a one-dimensional space and has therefore a unique frame consisting
of one halfiine which is in the interior. Therefore, by Theorems 8 and
15, any frame of A contains exactly one halfline which is not in L{A},
and it is in the interior of A.

(3) If d{A} < n, then A has no interior. If 1{4} < n — 1, then E*
mod L{A} is at least two-dimensional. The frame halflines of A which
are not in L{A} are mapped onto the extreme halflines of A mod L{4}
by Theorem 8, and, in a space of dimension at least two, these are all on
the boundary. Therefore those frame halflines of A which are not in
L{4} are in the boundary of A. Since it was shown in (1) that L{4}
is in the boundary of A, all the halflines in any frame of 4 are in the
boundary of 4.

THEOREM 17: Let A be a conver polyhedral cone in E*. Then A is
pointed if and only if there exists a halfspace H of E™ such thal, except for
the origin, A is confained in the interior of H.

Proor: Suppose that, except for the origin, A is contained in the in-
terior of a halfspace H. H is a convex polyhedral cone. Therefore,
by Theorem 16 (1), L{H] is contained in the boundary of , whence the
interior of H can contain no subspace of E" of positive dimension.
Therefore, 1{4} = 0.

Conversely, suppose 1{4} = 0, then by Theorem 12(2), d{A™} =n
and AT has an interior. Suppose beint A*. If n = 0, the theorem
is vacuous, and, if n > 0, then b 0 and b™ is a halfspace such that
except for the origin A is contained in the interior of b*. For suppose
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aeA and g is on the boundary of bt. Since the boundary of b is
bY, aebt. Therefore (2, b) = 0. Since beint AT, there exists
a A > 0 such that b — Mz eint A*. 'Then, by the definition of 4,
(@, b — M) 2 0. But (@, b — ra) = (a, b) — N, a), and (g, b) =0
by assumption. Therefore —Ma,a) 2 0,0r(g,a¢}) = 0. But(e,a) =0
for any a, henee {a, a) = 0. Since (e, @) = 0 if and only if a = 0, it
follows that @ = 0. Therefore, except for the omgm 4 is contained in
the interior of b™.

TaeorEM 18 (corollary to Theorem 18): Let A be a conver poly-
hedral cone in E™, and let S be a subspace of B*. Then A mod 8 = D{4}
mod 8 if and only if S inlersects the relative interior of A.

Proor: Since S is a subspace, § = —8 = D{S8}, and Smod 8§ = 0.
Suppose that S intersects the relative interior of A. Then 4 — § =
Df{A} + 8, whence 4 mod 8§ = Df{A}. mod 8. Conversgely, if A mod
S=Df{4] mod S, then A — 8§ = D{A} + §, and S intersects the rela-
tive interior of A.

As a special case of Theorem 18 it follows that if A is a convex poly-
hedral cone in E*, d{4} = n, and 8 is a subspace of E*, then A mod 8
is solid if and only if S intersects the interior of A.

TueorEM 19: Let A be a convez polyhedral cone tn E™ and San (n — 1)-
dimensional subspace of E™ which does not intersect the relative inferior
of A. Thena,bed,and a+ beS imply a, be 8.

Proor: Suppose o, be A, a-t-beS, and a¢S. Then, since e mod S
# 0,and ¢ = —~bmod 8, A mod 8 would not be pointed. But E” mod §
is one-dimensional; hence if A mod S is not pointed it is solid. By
Theorem 18 this implies that S intersects the relative inferior of A,
which is a contradiction.

TraroreM 20 (corollary): Let A be o conver polyhedral cone 7n E™, and
S be an (n — 1)-dimensional subspace of E® which does not infersect the
relative interior of A. Then (1) L{A] < 8, and (2) any frame of A con-
tains a set of halflines spanning A N 8.

ProoF: (1) Suppose ae L{A}. Thena, —aed, and ¢ —a =0¢S§,

whence a ¢ 8. (2) Suppose May - - -+ Na, €S, where (a1), -+ , (a.)
are halflines in some frame of A, and \; > 0,7 =1, --- , . Then a;,
, G, ¢S, whence (1), +-- , (a,) ¢S. Therefore, given any frame of

A and an arbitrary point of A N 8, the frame contains a set of halflines
whose convex hull contains the point.
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4. Facers

DeriviTion: Let A be a convex polyhedral cone of dimension n. Then
A shall have one n-facet, itself, and no r-facets for r > n. If r < n, then
F shall be an r-facet of A if F is a subcone of an (r + 1)-facet @ and
(1) F is contained in the relative boundary of G, (2) no subcone of G con-
tained in the relative boundary of G properly contains F, and (3) F is not
empty.

Conditions (1) and (2) state that F is maximal with respect to being a
subcone in the relative boundary of @.

TurzoreM 21: Let A be a conver polyhedral cone, and suppose thal
d{4A} = n, and that A is not solid. If B is a subcone on the relative
boundary of A, then A has an (n — 1)-facel containing B, and this facet
s of dimension n — 1.

Proor: Since d{A} = n, we may suppose that A is embedded in E*.
Then the relative boundary of A is the boundary of A. If B i in the
boundary of 4, then, by Theorem 18, A mod D{B} isnot solid. Suppose
d{B} = r. Then E" mod D{B} is of dimension n — ». A mod D{B}
is an intersection of a finite number of halfspaces of E* mod D{B},
each of which is bounded by a hyperplane of E” mod D{B} containing
n — r — 1 linearly independent points of A mod D{B}. Let S’ be
one of these hyperplanes and S the set of all points of E* mapping into
S’. Then 8 is an (n — 1)-dimensional subspace of E" containing B .
and not intersecting the interior of 4. '

We shall prove that A N Sisan (n — 1)-facet of A containing B, and
that dfd N S} =n — 1. A4 N Sis certainly a subeone of 4 contained
in the boundary of A. Also, d{d4 N S} =n — 1, since §' contains
7 — r — 1 linearly independent points of A mod D{B}, and d{B} = r.
1f C were a subcone of A properly containing 4 N S, then ¢ would con-
tain some point of 4 which was not in 8. But then ¢ would contain
n — 1 linearly independent points of § and at least one point not in S,
whence d{C} = n. C would then intersect the interior of A. Therefore
A N 8is a facet.

TarorEM 22 (corollary): If A is a conver polyhedral cone of dimension
nond F is an (n — 1)-facet of A, then d{F} =n — 1, and F = A N
DiF}.

Proor: By the preceding theorem, there is an {(n — 1)-facet & of 4
which contains F, and which is of dimension n — 1. @& cannot contain
F properly, by definition. Therefore G = F, and d{F} =n — 1.
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Since F does not intersect the relative interior of A, by Theorem 4,
D{F} does not intersect the relative interior of 4. Therefore 4 N D{F}
ig in the relative boundary of A. Since F C (4 N D{F}} and the
inctusion cannot be proper by the definition of a facet, F = A N D{F}.

THEOREM 23: Let A be a conver polyhedral cone and F be an r-facet of
A. Then

(1) diF} =,

{2) F= A N D{F},

{3) F i3 a conver polyhedral cone,

(4) in any frame of A there is a set of halflines spanning I,
(b) L{A} C F.

Proor: (1) By Theorem 22, if d{A} = n, then an {(n — 1)-facet of 4
is of dimension n — 1. It follows by induction that an r-facet is of
dimension T,

(2) By Theorem 22,if d{A} = n, and ('is an (n — 1)-facet of 4, then
G =AND{GE}. We may make the inductive assumption that, if @
isan (r + 1)-facet of 4, then ¢ = A M D{F}. By definition, A has an
(r + 1)-facet, F', of which F is an r-facet. Then F' = A N D{F} by
the induetive assumption, and F = F' N D{F’} by Theorem 22.
Therefore F = A N D{F'} N D{F}. But D{F} C D{F'}, whence F
= A N D{F}. 7

(3) By (2) F is the intersection of two convex polyhedral cones and
is therefore a convex polyhedral cone.

(4) and (5) If d{A} = n, we may assume that 4 is embedded in E™
Then, if Fisan (n — 1)-facet, (4) and (5) follow immediately from (2)
and Theorem 20. But then (4) and {5) hold for all facets of A by a
trivial induction.

TaroreM 24 {(corollary): If A is a convex polyhedral cone and Fy and
Fy are facets of A, then Fy = Fy if and only if D{F,} = D[F,].

TrecreEM 25: If A is a convex polyhedral cone and F a facet of A, then
A mod D{F} ¢s pointed.

Proor: If diA} = n, then the theorem is true for n-facets because
there is only one, A itself. Suppose that the theorem for r-facets of 4
is true. It will then be proved true for (r — 1)-facets of 4, from which
the theorem follows for all facets of A by induetion.

Suppose that F is an (r — 1)-facet of A. By definition there exists
an r-facet, @, of 4, such that F is a facet of ¢. (It has not yet been
proved that, if ¢ is any r-facet of A containing F, then F is a facet of
G} If A mod D{F} were not pointed, there would exist halflines {a)
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and (b) in A such that (¢) = —(b) mod D{F}, and (a), (b) # 0. If (a)
and (b) were both in @, then @ mod D{F} would not be pointed.  Con-
. gider & as embedded in D{@G}. Then G mod D{F} is a one-dimensional
cone in & onc-dimensional space and is therefore either pointed or solid.
Since it is not pointed, it is solid. Then, by Theorem 18, D{F} inter-
sects the relative interior of G. But then, by Theorem 4, F intersects
the relative interior of G, contrary to the definition of a facet.

But, if (e} is not in G, then a is not in D{G}, (a) mod D{G} = 0,
and, since D{F} c D{@}, (a) = —(b) mod D{G}. But then A mod
D@} is not pointed, contrary to the inductive assumption.

Tueorem 26 (Slater): Let A be a conver polyhedral cone and F o sub-
coneof A. Then Fisa facel of A if and only of 6, be A and a + beF
implyaeFandbeP.

Proor: If F is a facet, g, be A ande + be F,thena = —bmod D{Fj.
If a # O mod D{F}, A mod D{F} is not pointed, contradicting Theorem
25. Therefore ¢ =0 mod D{F}, whence a e D{F}. Likewise, be
D{F}. But F = A (1 D{F}. Therefore a, beF.

Let F be 8 subcone of A such that g, bedandag -+ beFimplyaeF
andb e F. Then, as in the proof of Theorem 20, any frame of A coniains
a set of halflines spanning F. F is therefore a convex polyhedral cone.
Let G be a facet of A of lowest possible dimension which contains F.
Then F must intersect the relative interior of ¢. For, if F is on the
relative boundary of G, then, by Theorem 19, there exists a facet H
of G which is of dimension one less than that of G and which contains
F. Since F intersects the relative interior of &, by Theorem 13, G — F
= D{G}. Let g be any point in G. Then there exist points ¢, ¢ ¢
andf e Fsuchthatg, — f= —g,orgy + g = f. But then, by hypothe-
sis, g ¢ F. Therefore G = F and F iz a facet.

TarorEM 27 (corollary): If A s a conver polyhedral cone and G and
F are facels of A such thal F < @, then F s a facet of G.

Proor: F is a subcone of 4 such that @, be A, and a + be F imply
¢, be F. Then, in particular, ¢, be@ and ¢ + b eF imply a, beF,
whence F is a facet of G.

TreoreM 28 (corollary): Let A be a conver polyhedral cone and let F
and G be facets of A. Then F N @ is a facet of A.

Proor: Suppose a, bed and e +beF N G Then A +beF and
a-+be@, whence @, beF and o, beG. Therefore a, be F (1 G and
F N Gis a facet.
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THEOREM 29 (corollary): Lef A be a convex polyhedral cone and let F
and G be facels of A. Then F intersects the relative interior of G if and
only of F contains G,

Proor: If F contains G, then F certainly intersects the relative inte-
rior of G.

Suppose that F intersects the relative interior of G. Then F N G
intersects the relative interior of . By Theorem 26, F N G is a facet,
and by Theorem 25 it is a facet of G. This is possible only if F N G = G.
But then F must contain G.

THEOREM 30: Let A be a convex polyhedral cone and F be a subcone of
A. Then F is a facet of A if and only ¥f A mod D{F} s pointed and
F = A N1 D{F}\.

Proo¥: If F is a facet, it has already beén shown that 4 mod D{F}
is pointed and F = 4 N D{F}.

Suppose that F is a subcone of A such that 4 mod D{F} is pointed
and F = A N D{F}. Ifa,bedanda+beF, thena+b=0mod
D{F}. Therefore, since A mod D{F} is pointed, a = 4 = 0 mod
D{F}. But thena, beD{F}. Since F=AND(F}, a,beF and F
is a facet.

THEOREM 31: If A s a convex polyhedral cone and F a facet of A, then
L{d — F} = D{F}.

Proor: Since A — F containg F — F = D{F}, D{F} < L{A — F}.
If the inclusion were proper, A — F mod D{F} would not be pointed.
But A — Fmod D{F} = A mod D{F}, whence A mod D{F| would not
be pointed, contradicting Theorem 23.

ALTERNATE ProoF: Buppose ce L[4 — F}. Then —ceLid — Fi,
and there exist points ay, ¢z e 4, f1, fo ¢ F such that ¢ = a; — f;, —¢c =
g9 —fa. Then 0 =gy +as —f; —fa, or ay + az = fy + fo. There-
fore a; + as ¢ F, whenee a4, a3 ¢ F. Therefore ¢ ¢« D{F}. Therefore
L{A — F} C D{F}. Since D{F} c L{A — F}, L{4 — F} = D{F}.

THEOREM 32 (Koopmans): Let A be a conver polyhedral cone and F a
subcone of A. Then Fisafacet of Aifandonlyif F = A O L{A — F}.

Proor: Let F be a subcone of A, and 7 the lowest~dimensional facet
of 4 contamning . Then F intersects the relative interior of @, be-
cause, if F were in the relative boundary of @, there would exist, by
Theorem 21 applied to the cone G, a facet of & of lower dimensionality
than G and containing F, contrary to assumption. Let fe F N rel int
@ and f=0. Then L{A —~ F} DL{G — f} = D|{G} = L{d — G},
by Theorems 14 and 31. Since also L{A — F} < L{4A — G}, we have
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L{A-F}=L{A—-G}. Hence ANL{4A—-F} =4 0NL{A ~ G}
= A N D{G} = G, by Theorems 31 and 30. Therefore, if F = A N
L{A — F}, we conclude that F = G.

Conversely, let ¥ be a facet of A. Then, by Theorems 30 and 31,
F=AND{F}l =AN0L{A - F}.

TaroreM 33: Let A be a convex polyhedral cone in E*. Then (1) if 8
is an (n — 1)-dimensional subspace not inlersecting the relative inierior
of A, then A N 8 is a facet of A, and (2} if F 1z an r-facet of A with
r < n, then there exists an (n — 1)-dimensional subspace S of E® such
that F = AN S.

Proor: (1) If § is an (n — 1)-dimensional subspace of E®, then
A N 8is a facet of A by Theorems 19 and 26. (2) Let F be an r-facet
of A with r < n. Then d{#} = r by Theorem 23 (1), and the dimen-
sion of E" mod D{F} =n —r = 1. By Theorem 17, A mod D{F} is
contaihed, except for the origin, in an open halfspace of E® mod D{F|.
Let S’ be the boundary of this open halfspace. Then 8 isan (n — d{F}
— I)-dimensional subspace of E* mod D{F}, and (4 mod D{F}) N &
= 0. Let S be the set of all points of E” which map into . Then §
is an (m — 1)-dimensional subspace of E*, § contains D{F} and 4 N
S C D{F}. Therefore ANS=ANSND{F} =A0D|{F} =F,
the last equality by Theorem 23 (2). Therefore 4 N S = F, and (2)
is proved.

THEOREM 34: If A is a pointed convex polyhedral cone and (a) a half-
line in the frame of A, then (a) is a facel of A.

Proor: By Theorem 10, (a) satisfies the criterion of Theorem 30.

THEOREM 35: Let A be a convex polyhedrul cone. Then every poind of
A s contained tn the relative inderior of one and only one facet of A.

Proor: Let a be a point of 4 and F the facet of least dimension con-
taining a. Since A itself is a facet of A, such an F exists. Then a
is in the relative interior of F. For if a were in the relative boundary of
F, (a) would also be in the relative boundary of F. Applying Theorem
21 to the convex polyhedral cone F, F hag a facet G of dimension d{F} —
1 which confains (a) and hence a. Since G is a facet of 4, this is a
contradiction.

Suppose that e is in the relative interior of facets F; and Fo. Then F
intersects the relative interior of 3, and Fy intersects the relative interior
of ;. By Theorem 29 it follows that F; < Fy; and F; € F,. There-
fore Fy = Fu, and a is contained in the relative interior of exactly one
facet.



CuHAPTER XIX

LINEAR PROGRAMMING AND THE THEORY OF GAMES!

By Davip GaLg, Harop W. KuHN, AND ALBERT W. TUCKER *

The basic “scalar” problem of linear programming is to maximize (or
minimize) a linear function of several variables constrained by a system
of linear inequalities [Dantzig, IT]. A more general “vector” problem
calls for maximizing (in a sense of partial order) a system of linear func-
tions of several variables subject to a system of linear inequalities and,
perhaps, linear equations [Koopmans, I1F]. The purpose of this chapter
is to establish theorems of duality and existence for general “matrix”
problems of linear programming which contain the ‘“‘scalar” and *“‘vector’”
problems as special cases, and to relate these general problems to the
theory of zero-sum two-person games.

1. NOTATION AND INTRODUCTORY LEMMAS

Capital letters, 4, B, C, etc., denote rectangular matrices; lower-case
letters, b, ¢, u, z, ete., denote vectors, regarded as one-column matrices;
and Greek letters (lower case) 8, A denote scalars—all quantities being
real. A prime is used to denote transposition: thus A’ denotes A trans-
posed, and b’ denotes a one-row matrix obtained by transposing the
vector b. The number of components of a vector or the numbers of
rows and eolumns of & matrix are not specified, but of course there are
some implicit relations: thus the product Az implies that the number of
columns of A is the same as the number of components of z. Vector
equations and inequalities are based on the following notation:

u = 0 means that all components of « are zero;

u = 0 means that no components of u are negative;
u > O means # 2 0 with u = 0 excluded;

u > 0 means that all components of u are positive.

Other usages follow naturally: thus v < 0 means —u >0, u; 2 uy
means u; — ug = 0, ete. It should be noted that the inner product

1 This chapter was presented in a preliminary form by A. W. Tucker at a meeting
of the Econometric Society at Boulder, Colorado, September 2, 1949,
2 Under contracts with the Office of Naval Research.
317
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Vu>0if b>0, u>0;of course, bu =Z 0 b= 0, u = 0. Matrix
equations and inequalities use the same rules: thus A > D means
A — D > 0 (i.e., each element of A — D is nonnegative, and at least
one element is positive).

The following lemmas provide the basis for the theorems in this
chapter. Lemma 1 expresses a fundamental property of homogeneous
linear inequalities observed by H. Minkowski [1896, p. 45]. Lemma 2
is an immediate consequence of Lemma 1, and Lemma 3 is a generaliza-
tion of Lemma 2,

Lemma 1: In order that @ homogeneous linear tnequality b'u = 0 hold
for all u satisfiring a system of homogeneous linear inequalities A'u = 0,
1t 18 necessary and sufficient that b = Az for some 2 = 0.

For proofs the reader is referred to J. Farkas [1901, pp. 5-7], H. Weyl
[1935 or 1950, Theorem 3], and in this volume David Gale [XVII,
corollary to Theorem 2} and M. Gerstenhaber [XVIII, Theorem 11].

LemMaA 2: I'n order that b'u < 0 for no u = O such that A'u = 0, 4 1s
necessary and sufficient that Az £ b for some z = 0.

z
Proor: In Lemma 1 replace 4 by [A ] and z by L ], where I de-

notes an identity matrix. Then, in order that bz = 0 hold for all u
satisfying A’ 2 0, w = 0, it is necessary and sufficient that b = Az + ¢
forsomez Z 0,¢t = 0. Thatis, in order that »'u < 0 fornou = 0 such
that A’ 2 0, it is necessary and sufficient that Az £ b for some
xz 0

Lemma 3: In order that B'u < 0 for no v = 0 such that A'u 2 0, ¢ s
necessary and sufficient that Az < By for somexz = 0, y > 0.

Proor: To show that the z, y-condition is implied by the u~condition,
we proceed. as follows. Let by, denote the kth column of the matrix B.
Then the u-condition implies that byu < 0 for no u 2 0 such that

z
A'v 20, —B'u 2 0. Hence, substituting [A —B] for 4 and [ k]

Uk
for z in Lemma 2, we have dx; — By =< by, for some z;, = 0, . = 0.

Then, summing for all columns of B, A(3> zx) — BC y:) = >.be. But
2br = Bj, where j denotes a vector whose components are all 1’s.  So
AQ i) = B(7+ Yyr). Thatis, since Yax =2 0and j+ e =7 >
0, we have

Az £ By forsome zzZ 0,y > 0.
This shows that the z, y-condition is implied by the u-condition.
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To show that the , y-condition implies the u-condition we assume, if
possible, that

Blug £ 0 for some uy = 0 such that A'up = 0.
Then

u:}Axgo>u6By forall z=490,y>0.
But, by the z, y-condition,
updr £ upBy for some z =0,y > 0.

This contradiction shows that the denial of the u-condition implies the
denial of the z, y-condition. Therefore the z, y-condition implies the
u~-condition. This completes the proof of Lemma 3.

2. LINEAR PROGRAMMING PROBLEMS

Two general dual problems of linear programming are stated below.
Each is based on the same given information—three matrices, 4, B, C—
and in each a matrix D is to be determined. A matrix D having a certain
property is said to be maximal or minimal (under partial ordering by the
rules of matrix inequalities explained in Section 1) if no other matrix
A possessing the property is such that A > D or A < D, respectively.

ProBLEM 1: To find @ maximal mairiz D having the property that
(1) Czz Dy forsome z 20,y >0 suchthat Ax < By.

ProBLEM 2: To find a minimal matriz D having the property that
(2) Bu=D'v forsome u=0,v>0 suchthat A'w = C.

It will be shown (in Theorem 4) that there exists a matrix D providing
solutions for both problems if the following existence conditions both
hold: :

3) Az £ By forsome 2z 0,y>0,
@) A'w 2 C'v forsome uz=0,v>0.

Tt will also be shown (in Theorem 2) that Problem 1 admits a particular
matrix D as solution if, and only if, Problem 2 also admits this D as a
solution.

If the matrix B consists of a single column, b, and the matrix C consists
of a single row, ¢/, then D becomes a scalar, 8, and ¥ and » become positive
scalars that may be eliminated by dividing through by them. In this
case the two general matrix problems reduce to the following two simple
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scalar problems: (a} to find the ordinary maximum, §, of the linear func-
tion ¢’z constrained by Az < b, = 0, and (b) to find the ordinary
minimum, §, of the linear function ¥'u constrained by A'v Z ¢, u = 0.

Prosrem 18: T'o find ¢ maximal scalar § having the property that
¢z =5 forsome =z =0 suchthat Az Sb.

Prosuem 28: To find o minimal scalar 8 having the property that
bu <6 forsome u=0 suchthat A'uz=c

The “diet problem’’ of Cornfield and Stigler [1945] furnishes a typical
cxample of Problem 2§; another, more specialized, example occurs
in the “transportation problem” of Hitchcock [1941] and Koopmans
[X1V]. Fundamental methods for attacking such sealar problems have
been developed by Dantzig [II, XXI, and XXTII). The duality and
existence theorems for Problems 15 and 26 are contained in the corollary
to Theorem 2 (at the end of Section 3 of this chapter) and in the remark
following the proof of Theorem 4 (in Section 4 of this chapter).

If the matrix B consists of a single column, b, but ¢ consists of more
than one row, then D becomes a vector, d, and y becomes a positive
scalar that may be eliminated by division. In this ease the two general
matrix problems reduce to the following vector problems.

ProereM 1d: T'o find @ maximal vecior d having the property that
Cxzd forsome z2z=0 suchthat Az =b.

ProeLeM 2d: To find o minimal veclor d having the property that

bu=<dv forsome w=0,2>0 suchthat A'w = C'n

A representative vector problem is the “efficient point” problem of
Koopmans [TI1] from which the general matrix problems in this chapter
have evolved. The following equations relate our notation to Koop-
mans’ partitioning of his fechnology matrix A, commodity vector y,
and price vector p, as regards primary and final commodities:

4 = Ay, b= — g, U = Ppris
C = Ay, €= Yn, ¥ = Dfin.

The extension to include infermediate commodities is indicated at the
end of Section 6 of this chapter,

Of course, there are also vector problems, 1d’ and 2d’, that occur
when the matrix C consists of a single row ¢’ and v becomes a positive
scalar that may be eliminated by division.
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3. Duarrry

In preparation for the duality theorem (Theorem 2), we will now prove

that the following new forms of Problems 1 and 2 are equivalent to the
original forms.

ProBLEM 1 (new form): To ﬁnd a mairiz D having both of the following
properties:

(1) Czz Dy forsome z=0,y>0 suchthat Az < By,
(2*y Cx > Dy forno r20,y=20 suchthat Ar < By.

ProsreM 2 (new form): To find a matriz D having both of the following
properties:

(2) BuzDv forsome uz=0,v>0 suchthat A'uz= O,
(1*) Bu < Dv forno “u=Z0,v20 suchthat A'w =z (',

Properties (1) and (2) ocecur also in the original statements of Prob-
lems 1 and 2. The new properties (2*) and (1*) are so denoted because
they are equivalent to (2) and (1), respectively, as will be shown in the
course of the proof of Theorem 2. 1t is to be remarked that a matrix D
having both properties (1) and (2*) must produce equality, Cz = Dy,
in property (1), and similarly that a matrix D having both properties
(2) and (1*) must produce equality, B’y = D'y, in property (2).

TurorrM 1: The new forms of Problems 1 and 2 are equivalent to the
original forms.

Proor: To show that a solution D for the new Problem 1 is maximal
as regards matrices having property (1), let us assume, if possible, that
there is a matrix A > D having property (1). That is,

Cx = Ay forsome =z =0,y >0 suchthat Az £ By.

Then Cx = Ay > Dy for the same z and y—thereby contradicting prop-
erty (2*) possessed by D as a solution for the new Problem 1. Conse-
quently, D is maximal as regards matrices having property {1). A simi-
lar argument shows that a solution D for the new Problem 2 is minimal
as regards matrices having property (2).

To show that a solution D for the original Problem 1 possesses prop-
erty (2*), let us assume, if possible, that

Cxg > Dyo forsome z0=0,% =0 suchthat Az, = Byg.
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Adding this to (1), we get
Clz + x0) =2 D(y + yo) forsume z+2920,y+ 4 >0
such that A(z + z) = B{y + o)

In the system of inequalities C{z + 20) > D(y - %o) there must be at
least one individual inequality containing >, and so any element in the
corresponding row of D may be increased slightly without disturbing the
inequality. Then D is not maximal as regards matrices having prop-
erty (1)—thereby contradicting the hypothesis that D is a solution for
the original Problem 1. Hence D must possess property (2*). A similar
argument shows that a solution, D, for the original Problem 1 possesses
property (1*). This completes the proof of Theorem 1.

TueoreM 2 (duality theorem): A matriz D is a solution for Problem
1 3f, and only if, it s a solution for Problem 2.

A
Proor: Tt follows directly from Lemma 3, by subst,ituting[ C‘] for

B u
A, [ D] for B, and [ ] for u, that a matrix D has property (1) if, and
— v

only if, it has property (1*). Then, replacing 4, B, C, D, z, ¥, 4, v in (1)
and (1%) by —A’, = (', —B’, — D', u, v, x, y, respectively, it follows that
a matrix D has property (2) if, and only if, it has property (2¥). Inface
of Theorem 1, this completes the proof of Theorem 2.

CoROLLARY: Problems 18 and 28 have a unique common solution, 8, or
else no solution at all.

Proor: From Theorem 2 it follows that both problems have a com-
mon solution 3 if either admits § as a solution. Suppose that §; provides
another solution for either problem. Then, by Theorem 2, 8; provides
also a solution for the dual problem. Clearly, &; cannot exceed § due
to the maximal property of 8, nor can & exceed 3; due to the maximal
property of 8;. So §; = §, which completes the corollary.

4, EXISTENCE

In preparation for the existence theorems (Theorems 4 and 5) we
introduce a third problem based on the same data as Problems 1 and 2

and employing jointly the two properties involved in the original forms
of Problems 1 and 2.

ProsrLEM 3: To find a mairiz D thal has both the following properties:
(1) Czz Dy for gome x20,y>0 suchthat Az = By,
(2) B'uz Dv for some u=0,v>0 sguchthat A'w = C'n
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A problem of this symmetric sort was formulated by von Neumann
[1947] for the case in which D reduces to a scalar §, corresponding to
Problems 16 and 23.

THEOREM 3: A malriz D is a solwtion for Problem 1 or 2 if, and only
itf, it 45 a solution for Problem 3.

Proor: It is an immediate consequence of the equivalence of prop-
erties (1) and (1*), and of properties (2) and (2*), established in the
proof of Theorem 2, that a matrix D has properties (1) and (2*) or
(1*) and (2) if, and only if, it has properties (1) and (2); and of course,
by Theorem 1, a matrix D has properties (1) and (2*) or (1*) and (2)
if, and only if, it is a solution for the original Problem 1 or 2. This com-
pletes the obvious proof.

Remark: Problem 3 is not changed if the leading inequalities in prop-
erties (1) and (2) are made equalities: Cxr = Dy and B’y = D'v. This
follows from the obvious facts (pointed out in sentences just preceding
Theorem 1) that a matrix D having properties (1) and (2*) must give
Cz = Dy and that a matrix D having properties (2} and (1*) must give
By = D'v.

THEOREM 4 (existence theorem): There exists a solulion, D, for Prob-
lem 3, and so for Problems 1 and 2 also, if, and only if, the following exist-
ence conditions are both satisfied:

(3) Az £ By forsome z =0,y >0,
(4) A'vw =z C'v forsome uz0,2> 0.

Proor: Let b = By, and ¢ = C’vy, where 3, and vy are the values of
¥ and v in any particular set of z, ¥ and u, v that satisfy the existence
conditions (3) and (4). Then {3) and (4) imply that

(38) Az =b forsome z=0,
{485) A'uzc forsome uz 0.

[These two conditions are denoted by (38) and (48) because they are the
counterparts of (3) and (4) for the scalar problems, 15 and 25.]
By Lemma 2, (38) and (448) are equivalent to

(35%) Pu<0 forno w=0 suchthat A'w =0,
(46%) ¢z>0 forno z=0 suchthat Az =0,

where in the case of (43) and (45*) we must replace A, b, u, z in Lemma, 2
by —A’, —¢, x, u, respectively.
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The inequality ¥u = ¢’z holds for all A = 0, # =2 0, z = 0 such that
Az = \b, A’u = he. For, if X > 0, we have
bVuz A Wdr = ¢z,
and, if » = 0, we have
bu =02 cr,

by (36*) and (48*). Consequently,

07T M A
b | <0 forno |u}=0
—c T x ¥y \
such that 0 A u [z 0.
-4’ 0 z
8o, by Lemma, 2,
¥ -
0 A [u"]g b | for some [%};0.
—A' 0 o —-c o

Multiplying these out, we get
bug £ ¢'zy, Azg £ b, A'ug 2 ¢ forsome ug =0,z = 0.
But b'up = ugdze = ¢'7o, 50
(8) b"U:o = u:)AZ(} = C’:l:o.
That is, replacing b and ¢ by By and C'vy, we have
uoByo = ugAzo = vCo.
Let
CzougB RupB | Cxof’
D= R o TR :f o]
upA g voh J Yo
h and j denoting vectors all of whose components are 1’s. Then, in
either case,

according as  ugdzo = 0 or = 0,

Dyo = Cry, and D = wyB.

This meansg that our D has properties (1) and (2) for the ¥, vy taken
initially and the zo, ug arising in the course of the argument (see remark
below). Consequently, D is a solution for Problem 3—and so, by
Theorem 3, for Problems 1 and 2 also.

Conversely, it is obvious that (3) and (4) must hold if there exists a
D having properties (1) and (2). This completes the proof of Theorem 4.
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Remark: It is to be noted that the gist of the above proof—namely,
the part from conditions (35) and (48) to equation (5)—amounts to
showing that Problems 15 and 25 have a common solution,

8 = buy = updzy = 'z,
when (38} and (45} both hold.

TuEOREM 5 (existence theorem): A solution, D, exists for Problem 1 if,
and only if, the following existence conditions both hold:

(3) Ax = By forsome z=0,y>0,
(4*) Cx>0 forno =0 suchthat Az 0.

Simgilarly, a solution, D, exists for Problem 2 if, and only tf, the following
existence conditions both hold:

4) A'v 2 C'v forsome u=0,v>0,
(3% Buw<0 forno # =0 suchthat A'w = 0.

Proor: By Lemma 3, conditions (3*) and (3) are equivalent. Like-
wise, replacing A, B, u, z, ¥ in Lemma 3 by —A’, — (", z, u, v, we see
that (4*) and (4) are equivalent. Hence (3) and (4*) or (4) and (3%)
hold if, and only if, (3) and (4) hold. And, by Theorem 4, a solution,
D, exists for Problems 1 or 2 if, and only if, (3) and (4) hold. 'This
completes the proof of Theorem 5. ‘

Remarks: 1t is to be noted that each of the four existence conditions
(3), (4), (3%), (4*) is necessary and sufficient that there exist a matrix D
having the corresponding one of the four properties (1), (2), (1%), (2%).
Thus (3} or (4) is implied by the existence of a matrix D having property
(1) or (2); and conversely, if (3) or (4) holds, we can construct a matrix D
having property (1) or (2) merely by taking large enough negative or
positive elements, respectively. The equivalence of (1) to (1*), ete.,
then shows that (3*) or (4*) is necessary and sufficient for the existence
of a matrix D having property (1*) or (2*%), respectively.

It is to be noted also that the existence conditions (3), (3%), (4), (4%)
can be interpreted in terms of special “null” problems, 1d’, 2d’ and 2d,
1d, in which ¢/ = 0 and b = 0, respectively. For, with C = ¢/ = 0,
property (1) or (1*) is held by D = 4’ = 0 if, and only if, condition (3)
or (3*) holds, while property (2*) or (1) is held trivially; and, with
B = b = 0, property (2) or (2*) is held by D =d = 0 if, and only if,
condition (4) or (4*) holds, while property (1*) or (2) is held trivially.
Hence the special “null” problem, 1d’, 2d’, 2d, or 1d, admits a null solu-
tion (' = 0 or d = 0) if, and only if, the corresponding existence condi-
tion (3), (3%), (4), or (4%) holds.
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5. PROGRAMMING AND GAMES

Let A be the “payoff” matrix of a zero-sum two-person game [von
Neumann and Morgenstern, 1944, Chapter III]. Then, to solve the
game, we must find the value, N, of the game and optimal (or good)
mixed strategies, u and z, characterized by the following relations:

A'u =z N, uz 0, gu=1,
A:zg)\g,' zz 0, e =1,

where g and 7 are vectors whose components are all 1’s. The fact that
such )\, u, z always exist—the main theorem for zero-sum two-person
games—can be established as a by-produet of Theorem 4. To this end,
assume that A > 0—not an essential restriction, sinee the sare arbitrary
constant x can be added to all the elements of a game matrix without
affecting the game (except to increase the value of the game by ).
Then N\ must be positive (if it exists), and the relations above can be
divided throughout by X. The divided relations may be rewritten in
reverse order, as follows:

(1a) Yz =248 forsome z =0 suchthat Az =g,
(2a) gu=23 forsome wu =0 suchthat A'u =i

where now 3, z, u replace the previous 1/\, z/\, w/\. This amounts to
Problem 3 for the special sealar case A >0, B=g, C=1¢, D = 3.
(See remark preceding Theorem 4 concerning the use of equations involv-
ing & rather than inequalities.) By Theorem 4 this scalar problem has 2
golution, §, because the existence eonditions,

Az =g forsome z=0; A'uz:i forsome u =0,

are easily satisfied by taking z = 0 and u sufficiently large. We carry
the solution back to the initial game relations by dividing (1a) and {2a)
throughout by 8, which is clearly positive-—and unique, by the argument
of the corollary to Theorem 2. Hence we conclude that the game with
payoff matrix A has a unique value, A = 1/8, and at least one pair of
optimal mixed strategies, © and . Such reduction of games to program-
ming problems is treated in this volume by Dantzig [XX] and Dorfman
[XXII).

It will now be shown that Problems 1 and 2, in full generality, are
related through Problem 3 to a zero-sum two-person game.
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TaroREM 6: 4 matriz D is a solution for Problem 1 or 2 if, and only
if, the game with the payoff mairiz

¢ )

has value zero and optimal mixed strategies

LI
vl Ly
such that v > 0 and y > O.

Proor: Substituting

e o} LGB

—C D1 Lyl Lyl  Lal’ b51°

for A, u, z, ¢, ¢, respectively, in the basic relations for a zero-sum two-
person game stated at the beginning of this section (g, &, £, j being vectors

whose components are all 1's), and requiring » =0, v > 0, ¥ > 0, we
get '

Alu = O, By £ D'y, w0, v > 0, gu+ h'v=1;
Az = By, Cz = Dy, zz0 y >0, i+ iy = 1.

But these amount to properties (2) and (1) of Problem 3, eoupled with
the “normalizations” g'u + kv = land ¢z 4+ §'y = 1, which can always
be achieved in Problem 3, because the inequalities v > 0 and v > 0
assure that (2) and (1) can be divided by g'u + Ay and 'z + j'y,
respectively. Therefore Theorem 6 is a direct consequence of Theorem 3.
This completes the proof.

One further theorem relating linear programming to games is stated
below. It follows out an ingenious idea of Dantzig |[XX] and Brown
[XXIV]. There does not seem to be any natural generalization for
Problems 1 and 2.

TraEoREM 7: A solution, §, exists for Problems 18 or 28 if, and only
tf, the symmetric game with the payoff mairiz

0 A -b
—A' 0 ¢
¥ = 0

has an optimal mized strategy whose last component is positive.
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Proor: We will not give the proof explicitly, but it is contained in
the proof of Theorem 4. (See the remark at the end of Theorem 4.)

Remark: Theorems 6 and 7 do not exclude necessarily the possibility
that there also exist optimal mixed strategies lacking the specified posi-
tiveness. ‘Thus the symmetric game above may also possess an optimal
mixed strategy,

u
T )

0

even when Problems 13 and 25 have a solution, §, In this particular
event, b'u = ¢’z = 0 due to conditions (36%) and (46%).

6. ProruEME WITH CONSTRAINT KqQUATIONS

The following dual problems present themselves when a system of
equations,
Ex = Fy,

is added to the constraints Az < By, z = 0, ¥ > 0 in Problem 1.

ProBrem 4: To find a maximal matrix D having the property that Cz
= Dy for some x = 0, y > 0 such that Az = By, Ex = Fy.

ProBLEM 5: To find @ minimal matriz D having the property that B'u
+ Flw < D'v for some w =0, v >0, w, such that A'u + E'w = (',
the vector w being unrestricied in sign.

These problems can be regarded as arising from Problems 1 and 2 by

A B U
substituting { £ | for 4, F| for B, and fw, | for u. Thenw =
_E Y Wy

w, — Ws is a vector whose components take all values, unrestricted in
sign, as the vectors w; and w, vary subject to the constraints w; = 0
and w, = 0. Conversely, any vector w can be expressed as the differ-
ence w; — wy of two vectors = 0, say, by taking 2wy = | 1 I + w, and
2wy = | w| — w, where | w| is the vector whose components are the
absolute values of the components of w.

There are exact analogues of Theorems 1-7 for these two problems,
which the reader may easily formulate for himself. '

If the matrices B and F consist of single columns, b and f, then D
becomes a vector d, and ¥ becomes a scalar that may be eliminated by
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division. In this case the general problems, 4 and 5, reduce to vector
problems that bear on Koopmans’ treatment of “‘efficient points” in the
presence of infermediate commodities [III]. To cover this extension the
following line should be added to the table of corresponding notations
near the end of Section 2:

E = :i-'-'Aint! ' f = 0, W = Pint.



CrAarTER XX

A PROOF OF THE EQUIVALENCE OF THE PROGRAMMING
PROBLEM AND THE GAME PROBLEM'!

By Georce B. Dantzie

J. von Neumann first pointed out that a game problem can be reduced
to a program problem. He was also the first to point out that a problem
concerning the maximizing of a linear form whose variables are subject
to a system of linear inequalities could be replaced by a sclution to an
extended system of linear inequalities. This result depends on the use
of an important lemma on inequalities stated in the last section of this
chapter,

George W. Brown demonstrated that the technigue of reducing the
game problem to a program problem could not be readily reversed.
Gale, Xuhn, and Tucker at Princeton showed that a program was
equivalent to a game in which the maximum value of the linear form
oceurs as an unknown element in the game matrix. When the program
is suitably eombined with its dual, there results a linear form with upper
bound zero. This forms the basis of the present proof. Tuecker is
responsible for the skew symmetric form of the game matrix as it appears
here in the solution of the program problem. Brown independently
arrived at the same resulf.

1. Consider a zero-sum two-person game with the payoff matrix A,
where A = [g;;} (6 =1, --- ;m;j=1, ---,n). The expected payoff
for player 1, if he engages in a mixed strategy, z;, -+ , 7, is given by

n
M = min E Q14%5,
i1

where ¥ #; =1, z; 2 0. It is well known [see, e.g.,, von Neumann,
1948, Theorem IV] that the optimal mixed strategy is given by deter-
mining the z; that maximize the value of M. We are thus looking for

! The author wishes to acknowledge the assistance of Major Dalton H. Wright
in the preparation of a previous version of this chapter.
330
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the largest M for which there exists a solution to the system of inequalities

a1 st Qg x M

§)] Az=z M, or (- -+ -

v

Am1 "¢ Opad LT, M

where M = maximum, > 7_,2; = 1, and z; = 0.
We may rewrite (1) in the completely equivalent form

Tita: + o0yt Tplyn — v = M,

...................

(2)
Z10mt + Zolms + -+ -+ Zplpn — 0, = M,

1 Fry Az, =1,

where v; 2 0, z; = 0.

By subtracting the first equation of (2) from the second, third, etc.,
the resulting system is equivalent to the linear programming problem
of maximizing a linear form of nonnegative variables subject to a system
of linear restrictions, that is,

z1013 B aE ol ¥ - = M = max,

i@ — ann) +- -4 aalaen — a10) — (02 — vy) =0,

-'El(aml - all) +- 4+ xn(dmﬂ - aln) - (”m - 91) = O;
L +-- 4z, =1,

wherevsé‘),xjg O(Jz L. )'n’)-

It is obvious that solutions to (3) exist and that max M of (3) is equal
to max M of (1). Thus a game problem can be ‘“‘reduced” to a program
problem. -

Another, more symmetric way of effecting the “‘reduetion” to a pro-
gram problem is obtained by substituting Z;,M = z; in (1), thus obtain-
ing the system

a1+ Tnllm 2 1,

Z10m + -+ Enlan = 1,

Zi 4+ 3 = (1/M) = min,
where #; = 0.
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This substitulion ts valid only if the value of the game, M, is known o be
positive. However, since all the elements of the payoff matrix can be
made positive by adding a suitable constant without affecting the mixed
strategy, the restriction M > 0 presents no difficulties.

2. Conversely, a linear program problem can be expressed in terms of a
solution to an associated game problem. In faect, we shall transform a
linear program problem into a skew symmetric game problem and show
that the solution of the former, if any, is equivalent (except for one side
condition) to the solution of the latter. Consider a program problem in
the form

anzy +- 0+ Q1T 2 by,

(4) e e e e e e .
Gm1%1 + -+ CmaZn Z b,

(5) oz ot eatn = M,
where z; = 0, and M = minimum of the linear form (5). The set of all
n-tuples, T, -+ + , £, satisfying (4) constitute the set of so-called feasible

solutions to the program problem. The one which minimizes the linear
expression (5) is termed an optimum feasible solution and is the one
sought.

The close relationship between (4) and (5) and the dual system (6)
and (7) below, obtained by interchanging the role of rows and columns
and reversing the inequalities, will now be considered. We have

oantr +- -t Cra¥m = 01y
B) e e e

Aalt -t Cmnlim = O,

(7) blyl ++bmm éM,;

where ¥; = 0, M’ = maximum of the linear form (7).

Tt will be assumed that solutions to (4) exist and that the greatest lower
bound, M, of the linear form (5) for z; satisfying (4) is finite. There
exists in this case at least one set of x; satisfying {(4) which attaing the
lower bound M. By the lemma which appears at the end of this paper
it follows that there exists also y; satisfying the dual system (6) and that
M’, the least upper bound of (7}, is also finite. 'The value M” is attained
for at least one set of y; satisfying the dual system.

Letting (21, 22, - -+ , @a) be any solution to (4) and (1, ¥2, - , ¥m)
any solution to (6), then, by weighting the first inequality of (4) by y;,
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the second by ¥z, - - - , the last by y.,, and summing the inequalities, we
have

8) byt bmym £ (2 aﬂyi)-‘a’h +-- ot (Z ainy:‘)%,

T==1 i=1

where, applying (8),
) biyr + - bulim = 1y + Co¥g + -+ Cuny
from which it follows by the observations made in the above paragraph
that M’ = M.

The relationship between M and M’, by the lemma on linear in-

equalities to be discussed in the last section of this chapter, is, however,
stronger than this indicates, namely, one of striet equality,

(10) M =M.

This lemma is a fundamental property of homogeneous linear inequalities,
proved by J. Farkas [1901] and H. Weyl {1935, 1950]. An equivalent
proof is given by M. Gerstenhaber [XVII], Theorem 11).

Consider now the reverse inequality to (9), written in the form

(11)  ~(ewxy F ooz + -+ cozn) + (in +-- -+ bulym) = 0.

A simultaneous solution to the system of inequalities (4), (6), and (11)
will, because of relation (9), be an optimizing solution. We may rewrite
the system (4), (6), and (11) in homogeneous form by setting b; = bz,
¢; = ¢z It is desired to solve this system for z; 2 0, ;2 0,z = 1.

To transform the system into a game problem, we shall look for a solu-
tion to the homogeneous system under the assumption

(12) S+ yita=1,

=1 i=l
with the additional restriction that z > 0. By dividing through by =
a solution to the original system is obtained.

Consider now the game problem given by the equations

@ty FoF Gty — bz 2 M,

................

(13) ................

................

"‘(alnyl + - Gmnlin — cn2) = M,

—(eyxy + oo enza) + Gagn oo bpm) 2 M,
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where M = maximum. A solution to (13) with M = 0 is equivalent to
(4), (6), and (11) in homogeneous form.

The payoff matrix associated with (13) is skew symmetric and may be
written

0 A —b
(14) —4 0 el
¥ —¢ 0

where A’ is the transpose of 4, and ¥ and ¢’ are the row vectors obtained
by transposing the column vectors b and ¢.

The value of a game with a skew symmetric payoff matrix is always
zero. If a solution to (4) and (5) exists, a solution to (13) with M = 0
can be obtained. Thus an optimum mixed strategy exists for (14) with
z = 0. It is also clear that a solution to the game matrix (14) always
exists, but not necessarily with 2z > 0. If one exists with 2> 0, a
solution is obtained to the system (4), (6), (11). Hence a program
problem can be “reduced” to a game problem with a skew symmetric
payoff matrix.

The following lemma was used to justify (10). No proof will be given,
but its relation to the dual will be discussed presently.

LemMma: If there exists one or more solutions to a system of N linear
inequalities, L; = c¢;, where © = 1, 2, --- | N, and if, whenever the system
L; = ¢; 15 satisfied, a linear inequalily Ly = ¢q is satisfied, then Ly can
be formed as a positive linear combination of L;; that is,

(15) Lo = ML 2 ¢
CoROLLARY: min Ly = 3 A\ie; = cp.
We now rewrite (4) and (5) in proper form to apply the lemma.:
(16) ;20 CE=1,,m),

anzy + Ggte + -+ Ginta = by,
(17) e
Cm1t1 t GpaTs + -0 Bpata = bm;

(18} ery + earg 4o - -+ e = M,

where M = minimum of the linear form (18).

1t is clear that, if there exist solutions to (16) and (17), they will
always satisfy (18). Hence, by the lemma and corollary, (18} is a
positive linear combination of (16) and (17) provided M # —. Let
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u 20, up 20, --+ , s Z 0 be weights applied to inequalities (16),
andy; 2 0,220, -+, ¥m = 0 weights applied to (17); then

apyr +- -t amym — U = ¢y
(19) e e e e e

Q1aY1 t F Cmnlfm — Un = Cp,
(20) b - bt =M.

By dropping u; = 0 from (19) we obtain (6). Relation (9) may be
used with (20) to obtain (7) and M’ = M, where it should be noted that
y; satisfying (19) and (20) are optimum y;, while any ¥; = 0 satisfying
(7) and (9) were considered initially. This completes the setting up
of the dual.






PART FOUR

PROBLEMS OF COMPUTATION






CaarteEr XXI

MAXIMIZATION OF A LINEAR FUNCTION OF VARIABLES
SUBJECT TO LINEAR INEQUALITIES!

By Georee B. Dantzic

The general problem indicated in the title is easily transformed, by any
one of several methods, to one which maximizes a linear form of non-
negative variables subject to a system of linear equalities. For exam-
ple, consider the linear inequality ax + by 4+ ¢ > 0. The linear in-
equality can be replaced by a linear equality in nonnegative variables
by writing, instead, a(x; — x2) + b(yy — y2) + ¢ — 2 = 0, where z; = 0,
22 0,412 0,422 0,2= 0. Thebasic problem throughout this chapter
will be considered in the following form:

ProsreMm: Find the values of Ay, g, <+ ¢ , My which mazimize the linear
form

1 ey + Aaca + -+ Mgy

subject to the conditions that

(2) A z0 (j=152)"'1n)
and

Mayr + Aettig -+ Aalyn = by,
3) Maz; + Ao@ag -4 Myag, = bg,

............

M1 + Nallma + - -+ Mplmn = bm:
where a;;, b;, ¢; are constants (1 =1,2, -+ ,m;j=1,2, -+, n).

1 The author wishes to acknowledge that his work on this subject stemumed from
discussions in the spring of 1947 with Marshall K. Wood, in connection with Air
Force programming methods. The genersl nature of the “simplex” approach (as
the method discussed here is known) was stimulated by discussions with Leonid
Hurwics. :

The author is indebted to T. C. Koopmans, whose constructive observations
regarding properties of the simplex led directly to a proof of the method in the early
fall of 1947. Emil D. Bchell assisted in the preparation of various versions of this
chapter. Jack Laderman has written a set of detailed working instructions and has
tested this and other proposed techniques on several examples.

339
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Each column of coefficients in (3) may be viewed as representing the
coordinates of a point in Euclidean R,, space. Let P; denote the jth
column of coefficients and Py, the constants on the right-hand side, i.e.,
by definition,

G Gz o G by

4) [Py, Pgy -+ , Pr; Pol = lag @Gz -+ agn b

_ Gmi Gmz " Omn bm
The basic problem then is to determine nonnegative A; = 0 such that

(5) MPy 4 2Po 4+ NP, = Py,
(6) )\101 + k202 + LA '+ hncn = 2z = max.

A set of \j which satisfy (5) without necessarily yielding the maximum
in (6) will be termed a feasible solution; one which maximizes (6) will
be called a mazimum feasible solution. The purpose of this chapter is
to discuss the so-called “simplex” technique, which consists in construct-
ing first a feasible, and then a maximum feasible, solution. In many
applications, of course, feasible solutions are easily obtained by inspec-
tion. For this reason, and because an arbifrary feasible solution can
be obtained in & manner analogous to the construetion of a maximum
feasible solution, we shall consider first the construction of a maximum
feasible solution from a given feasible solution.?

AssumPTION (nondegeneracy): Every subset of m poinis from the sel
(Po; Py, P, -+ -, Pg) is linearly independent,

The theorems given in Seetions 1 and 2 below come about naturally
in the construction of a feasible and a maximuin feasible sotution to (5)

2 The nondegeneracy assumption has been made to simplify the development that
follows. There are obvious ways in which this assurmption could be weakened.
For example, the m equations implied in (5) may not all be linearly independent, in
which case k¥ < m independent equations could be chosen and the remainder dropped.
When this is done it may still be true that P is linearly dependent on less than k of
the P;. One way to avoid this type of “degeneracy’ is to alter slightly the values of
thé eomponents of Py. This method is extensively employed in the transportation
problem [XXIII]. Recently a workable numerical procedure has been developed
for the general case as well. The procedure augments the original set of points, Py,
by a set of unit vectors V; where the ¢; for maximizing form (1) associated with the
points V; are assumed ‘‘small.” By choosing either V; or —V, a feasible solution
can be obtained by inspection rather than through the method of Section 2 of this
paper. ‘This cuts the computations in half. Moreover, the rank of the system is
automatically m, L.e.,, & = m, s0 that Ly this approach all problems connected with
degeneracy are solved.
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and (6). They may be used to prove the following important proposi-
tions (actually, the proofs of Theorems A and B do not require the non-
degeneracy assumption):

TaeoreM A: If one feasible solution exists, then there exists a feasible
solution (colled a basic feasible solution) with, al most, m points P; with
positive weights h; and n — m, or more, points Py with x; = 0.

TaEOREM B: If the values of z for the class of feasible solutions have a
finite upper bound, then a mazimum feasible solution exists which is a basic
Jeasible solution.

1. ConsTrUCTION OF A MaxiMum FrasisLe SoLuTion

Assume as given a feasible solution consisting of exactly m points,
P;, with nonzero weights; that is,

0, MP1 A+ NPy Ao AP = Py, N> 0.
(8 Meor + Agez F -0t Mmlm = 20

In establishing the conditions for and the construction of a maximum
feasible solution, it will be necessary first to express all points, P;, in
terms of a basis consisting of m points which form the above feasible
golution; that is,

9 2Py + 295Po -t TP =P; (j=1,2, .-+ ,n).

We now define z; by

(10) z1j0 F T30 ot Tmitm =2 (J=1,2, -, m).
TrroreM 1: If, for any fixed j, the condilion

an c; >z

holds, then a set of feasible solutions can be constructed such that

(12) 2> 2

for any member of the set, where the upper bound of z is either finile or
infinite.

Cask 1: If finite, a feastble solution consisting of exactly m points with
positive weights can be constructed,

Casg I1: If infinite, a feasible solution consisting of exactly m + 1 poinis
with positive weights can be constructed such that the upper bound of z
= oo,
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Proor: Multiplying (9) by # and subtracting from (7), and similarly
multiplying (10} by ¢ and subtracting from (8), we get

(18)  (\y — 82)P1 4+ (Ag — Bxo)Pa 4 - -+ (v — 02ij) P + 8P = Py,
(14) (M — 6xj)cr + (A — 0x3)ce + -+« (A — OTjdem + Oc;
= Zp + 9(6;5 - z.f)r

where the term 6c; has been added to both sides of (14).

Since A; > O for all ¢ in (13), it is clear that there is, for 8 = 0, either
a finite range of values 6, > 6 = 0 or an infinite range of values such
that the coefficients of P; remain positive. It is clear from (14) that
. the z of this set of feasible solutions is a strictly monotonically increasing
function of 8,

(15) 2 =z + 6lc; — z) > 2o, 6> 0,
since ¢; > 2; by hypothesig (11), thus establishing (12).

Case I: If z;; > 0 for at least one 1 =1, 2, --- , m in (13) or (9),
the largest value of # for which all coefficients in (13) remain nonnegative
is given by

(16) #o = min (R,‘/ﬂ:ij), x> 0.

If i = 4y yields 6, in (15), it is clear that the coefficient corresponding to 7,
in (13) and (14) will vanish, hence a feasible solution, given by 8 = 6,
has been constructed with exactly m positive weights; moreover, z > z.
Tt will be noted that this new set of m points consists of the new point,
P;, and (m — 1) of the m points previously used. This, then, is a desired
solution for Case I of Theorem 1.

The new set of m points may be used as a new basis, and again, as in
(9) and (10), all points may be expressed in terms of the new basis and
the values of ¢; compared with newly computed z/s. If any ¢; > z;,
the value of z can be increased. If at least one z;; > 0, another new
basis can be formed. We shall assttme that the process is iterated until
it iz not possible to form a new basis. This must occur in a finite

n
) bases and

m
none of these bases can recur, for in that case their 2-values would also
recur, whereas the process gives strictly increasing values of z. Thus

number of steps because, of course, there are at most (
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it is clear that the iteration must eventually terminate, either because at
some stage

a7 z; £0 forall 1=1,2,--- ,m
and some fixed j, or because
(18) e; <z forall j=1,2, .- n

Case II: If (17) holds (i.e., for all Z, x;; < 0), then it is clear that 8
has no finite upper bound and that a class of feasible solutions has been
constructed consisting of m + 1 points with nonzero weights such that

the upper bound of 2 = <.

In all problems in which there is a finite upper bound to z, the iterotive
process must necessarily lead to condition (18). We shall prove, however,
that the feasible solution associated with the final basis, which has the
property ¢; £ z; for all j =1, 2, --- , m, 18 also a maximum feasible
solution (Theorem 2). Hence, in all problems in which there is no finite
upper bound to z, the derative process must necessarily lead to condition
(17); moreover, by rewriting (9) as

(19) P; + (_Ilj)Pi + (—x25)Pa +- - -+ (—2nj)Pm = 0, 2 =0,

for the fixed 7 of (17), we have shown that a nonnegative linear combina-
tion of (m + 1) points vanishes if the upper bound of 2 is +=. In many
practical problems physical considerations will dictate the impossibility
of (19).

As a practical computing matter the iterative procedure of shifting
from one basis to the next is not as laborious as would first appear
because the basis, except for the deletion of one point and the insertion
of a new point, is the same as before. In faet, a shift of a basis involves
less than mn multiplications and an equal number of additions. It has
been observed empirically that the number of shifts of basis can be
greatly reduced not by arbitrarily selecting any point, P;, satisfying
¢;j > z;; but by selecting the one which gives the greatest immediate
increase in z; from (15) the criterion for choice of j is such that

(20 8o{c; — 2;) = max,
i
where §; is given by (16) and is a function of j. A criterion that involves

considerably less computation and apparently yields just as satisfactory
reaulis is to choose 7 such that

(21 {¢; ~ 2;) = max.
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By the use of either (20) or (21) approximately m changes in basis are
encountered in practice, so that about m®n multiplications are involved
in getting 2 maximum feasible solution from a feasible solution. There
exist further refinements of computations by which 2m* + n computa-
tions are required per shift in basis if eriterion (21) is used, or roughly
2m® + mn in all. However, to obtain a feasible solution will also re-
quire about 2m® + mn multiplications if one such solation is not readily
available, and the selection of an original basis will require m® more—-
hence the method involves about 5m? 4 2mn multiplications.3

TaeoreM 2: If, for all j = 1, 2, --- | n, the condition ¢; < z; holds,
then (7) and (8) constitute @ mazimum feasible solution.

Proor: Let
(22) Py + pePg +- -+ puPp = Py, 4; 20,
(23) #18 + p2Cy - paly = 2%,
constitute any other feasible solution. We shall show that zq = 2z*.
By hypothesis, ¢; < 2;, so that replacing ¢; by 2; in (23) yields
(24) B121 + o2y 4o paze = 2%

Substituting the value of P; given by (9) into (22) and the value of
z; given by (10) into (24), we obtain

(25) (2 #ﬂ'ﬁ) Py + (2 FJ""%) Py +---+ (Z n:'xmg') Py, = Py,
J=1 j=1

=1
(26) (E leaj) o + (E uszj) cg .-+ (E ujﬂimj) om = 2%,
F=1 F=1 =1
According to our assumption of nondegeneracy, the corresponding coeffi-
cients of P; in (7) and (25) must be equal; hence (26} becomes

27) Mep F Agls F - i A = 2%
or, by (8), _
(28) 2 = 2%

In order that another maximum feasible solution exist it is necessary
that ¢; = z; for some P; (not in the final basis). It will be noted, how-
ever, that in this case the extended matrix

P Py - P,
29) [ 1 Pa ]
1 Ca ves Cp

8 8ea footnote 2 on page 340.
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[see (4) above] has at least one set of m + 1 columns which are linearly
dependent. Thus a sufficient condition that the mazimum feasible solution
constructed from the given feasible solution be unique is that every sel of
(m + 1) points, defined by columns in (29), be linearly independent.

2. CONSTRUCTION OF A FEASIBLE SOLUTION ¢

We begin by selecting an arbitrary basis of (m — 1) points, P;, and
P,y. Denote this set by (Py; Py, -+ -, Pm_1). Any P;can be expressed
in terms of this basis by

30)  wuPo+ w1+ FvmiPaa=P (G=1L2, .-, m).

TororeM 3: A sufficient condition that there exist no feasible solulion is
that yo; < 0 for all j.

Proor: Assume on the contrary that there exists a feasible solution,
(31) kI‘PI"5"}‘2132"l"""')\ﬂ,PﬂE‘JPO, )\3;0
Substitute the expressions for P; given by (30) into (31):

(32) PO (Z Ajyﬂj - 1) + Pl (Z Ajyu) -+-- .
1 1
+ Pry (E M‘?J(m-—l)j) = 0.
1

In view of the assumed independence of (Po; Py, -+, Pn_y) it is clear
that each coefficient in (32} must vanish; in particular,

(33) 3 Ao, — 1 =10.
1

This is impossible if simultaneously A; = 0 and y,; < 0 for all j.

To construct a feasible solution we first define a fixed reference point,
@, given by

(34) G = w Py 4 wePs 4+ -+ Wy 1Py — poPy,

where w; > G (i =1, --- , m — 1) and py > 0 are arbitrarily chosen.
For convenience we rewrite (34) in the form

(35) G+ poPo = wiPy + wePy + -+ Wy Py

In the development that follows, pp will play a role analogous to z.

1 See footnote 2 on page 340.
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By Theorem 3, if there exists a feasible solution, there exists at least
one 7 (which we shall consider fixed) such that

{36) yo; > 0.
Multiplying (20) by 6 and subtracting from (35), we obtain
(37) @+ (po -+ 6y0;)Po
= 6P; + (w1 — 8y)P1 +- - -+ (Wa—t — OYm—1)7)Pm—1.

For a range of 6, > 6 > 0 we can consfruct, in a manner apalogous
to (13) and (14), a set of points of the form ¢ 4 pPy, each given by a
positive linear combination of points P;. Since p will play a role
analogous to z, we are interested in the highest value of p for which this
is possible. It will be noted that

(38) p = po T Bo; > po

since yo; > ( has been assumed.
If, in the representation of P;in (830}, ally;; =0 (i =1, ---,m — 1),

the coefficients of P; will be positive and p — + asd — 4. At
the same time it will be seen, by solving (30) for Py,

(39) Po = (Yyop)Ps + (—y1i/v0)P1 ++ -+ (~Ym—-1)i/%0;) Pr~1,

that a feasible solution has been obtained (i.e., Py has been expressed
as a positive linear combination of Py, Py, --- , P,y and P;). If at
least one y;; > 0 (¢ =1, - - - , m — 1), the largest value of 8 is given by

(40) o = m_in (wify:i5),  wi > 0.
Setting 0 = 6, the coeflicient of at least one point, P;, will vanish and a
new point,

G + PIP 0y

will be formed from (34) which is expressed as a positive linear combina~
tion of just m — 1 points, P;, where

(41) p1 = po + Boyo; > po.

Expressing all points P; in terms of the new basis, the process may be
repeated, each time obtaining a higher value of p (or an infinite value,
i.e., a feasible solution). The process must terminate in a finite number
of steps. For, otherwise, since there is only a finite number of bases,
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the same combination of {m — 1) points P; would appear a second time;
that is,

(42) G+ p'Py = wi Py + wiPy -+ Wy 1P,
(43) G+ o"Py = wi'Py + wy Pyt wpy_ 1Py,

where p" > p’. Subtracting (42) from (43), we obtain a nonvanishing
expression giving Py in terms of (m — 1) points P;, contradicting the
nondegeneracy assumption.

There are, however, only two conditions which will terminate the
process; i.e., after a finite number of iterations either

(44) Yo; =0 forall j=1,---,n

in whieh case, by Theorem 3, no feasible solution exists; or, for some
fixed j,

(45) y; =0 forall ¢=1,--.,m,

in which case, by solving (30) for Py, as was done in (40), we obtain the
desired feasible solution.

The term “‘simplex” technique arose in a geometric version of this
development which assumes that one of the m equations (3) is of the
form

(46) MtAto A =1

A point, P;, is defined by the remaining coordinates in a column includ-
ing ¢; from (1) as an additional “z”-coordinate. We may interpret (1)
and (3) as defining the center of gravity of a system of points P; with
weights A;. The problem consists, then, in finding weights X; so that
the center of gravity lies on a line I defined by m — 1 of the relation-
ships 2y = by, zg = bs, -+ , Z;m = by, such that the z-eoordinate is
maximum. A basis, Py, Ps, -+ , Py, may be considered one of the
faces of a simplex formed by Py, Py, --+ , Py, and P;. The z-coordinate
of P;is ¢;; the z-coordinate of the projection parallel to the z-axis of the
point P; on the plane of the face formed by the basis is z;. Because
¢; > z; by (11), all points in the simplex lie “above” the plane of this
face. The line L cuts the base in an interior point whose z-value is 2,
hence it must intersect another face of the simplex in a “higher” point
(i.e., a point whose z-value is greater than zp).
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APPLICATION OF THE SIMPLEX METHOD TO A
GAME THEORY PROBLEM!

By RoserT DORFMAN

This chapter wag presented at the Conference on Linear Programming
because there seems to be a shortage of small scale examples of the
calculations involved in computing an optimum program. The chapter
is concerned, to be sure, with working out the optimum strategies of
two opponents in accordance with the principles of game theory. But,
as is shown in the first section, such a problem in game theory is equiva-
lent to a problem in linear programming, and the transformation from
game form to programming form is easy to make. Another demonstra-
tion of the equivalence of game and programming problems is given by
Dantzig [XX].

It will be noted that when a game is reduced to linear programming
form there results a special type of matrix, part of whose columns form
a negative identity matrix. Such special matrices are also character-
istic of some genuine linear programming problems. They arise when-
ever disposal activities are used.

In problems of game theory there is never any difficulty in finding a
feasible solution from which to begin the optimizing process. Such diffi-
culties may be encountered in a genuine linear programming problem,
however, and this is the principal difference between the two as far as
computational problems are concerned.

The first part of this chapter will show how any game situation may
be put in proper form for the simplex method. In the second part the
calculations involved in solving a specific game will be outlined and
explained. ’

1. RepvcrioN oF o GaME To SimerLExX ForM

Consider a constant-sum two-person game where X, the maximizing
player, has m strategies, 1, 2, --+ , m; ¥, the minimizing player, has

1The assistance of George B. Danizig in the preparation of this chapter is grate-
{fully acknowledged. Thanks are due also to M. L. Slater for a number of helpful
suggestions.
348
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n strategies, 1, 2, -+ - , n; and a;; is the value of the game to X if he plays
his 7th strategy and Y plays his jth. The payoff matrix is then

Ain Q21 Opy

Q12 @22 - Gmz
A= .

Gin Qan - Omy

Without loss of generality it can be assumed that every clement of
this matrix is greater than zero. If this is not true of the game as origi-
nally formulated, a sufficiently large constant can be added to the ele-
ments of the matrix to make them all positive. The addition of guch a
constant will leave the optimum strategies unchanged.

Suppose that X plays the mixed strategy defined by giving weight =,
to the 7th pure strategy, 3> 7"z; == 1. Then the value of the game will be

n
v = 2 yio2s + agTz + -+ Gmjm),

=1
where y; is the weight given fo the jth strategy open to Y. Let

Bj(z) = ayry + agxe + - -+ Cnjm,
and let
B; (z) = min By(z).
2

Then X can anticipate that, if his strategy is found out, ¥ will choose
¥, = 1, y; = 0 (§ # jo), so that the value of the game to X is v =
min; B;(z) = Bj;(z). Thus X must endeavor to select =, 29, *++ , T
so that min; B;(z) is as great as possible, subject to the condition
2l =L

The linear programming problem equivalent to this will now be con-
structed. Consider any set, z, of weights, and let B (z) = min; B;{(z).
Also let

(1) Uy = x,;/B,-n(a:).

Since we have assumed that all the elements of the matrix are positive,
B; () must also be pesitive, and then

@ Bi(u) = B,(x)/min B;(x) = 1,
F}
(3) 8= 2 u; = 3 2:;/Bj(x) = 1/B;x).

taml izl
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Each set of weights, 7, determines a game-value, B; (), a set of v defined
by equation (1), and a surmn S defined by equation (3). By virtue of
equation (3), the set of x which determines the smallest S will also deter-
mine the largest B;(z). This set of z can be found in two steps:

(a) Find a set of values, uy, Uy, -+, Um, Ump1, *** , Umyn, Satisfying
(4) T owu =0 (k=1,2,---,m+‘n),
(5) Bi(u) —tmyi=1 (7=1,2,.---,n),

(6) S = u; + uy +++++ U, = minimum.

This is the problem in the form for the simplex method.
(b) Compute x; from

7 %= u/S G=1,2 - ,m).

2. APPLICATION TO A Sprctric GAME

This method of computation will be illustrated by solving the game
specified by the payoff matrix of Table I.

Tasie I. Payorr MarTrix

Player A's Strategy *
Player B’s
Strategy *
1 2 3 4 5

1 5.31 8.52 12.05 16.00 20.00
2 2.70 3.97 6.30 9.70 13.40
3 3.64 2.70 3.60 5.91 8.99
4 591 3.60 2,70 3.84 6.02
5 9.70 6.30 3.77 2.70 4.04
6 16.00 12.05 8.52 5.31 2.70

* A is the maximizing player, B the minimizing player.

The matrix for determining the u is obtained by appending to this
matrix the negative of the identity matrix and prefixing a column-vector
of 1’s, as in Table II. Appending the negative identity matrix amounts
‘to introducing n “dummy strategies” for the maximizing player. Each
of these dummy strategies corresponds to one of the real strategies of
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the minimizing player, the one in whose row the nonzero element
oceurs.

Kach of the columns in this matrix is regarded as a point in six-
dimensional Euclidean space. The simplex method makes use of the
fact that any point in an n-dimensional space can be expressed 2s a sum
of » linearly independent points.

TaeLE JI. MaTrIX FOR DETERMINING w

P, P Py P; Py Py Py, P; Py Py Py Py

1 5.31 B8.52 12.06 16.00 20.00 —
1 2,790 3.77 6.30 5.70 13.40
1 3.64 270 3.60 591 8.99
1 .5.91 3.6 270 3.6¢ 6.02
1 9.0 6.30 3.77 2.70 4.04
1 16.00 1205 8.52 5.31 2.70

(= =
o= e = T o B ]
= e R i e e}
|
SO~
=000

The first step in the solution is to seleet six points on the basis of which
all twelve points can be expressed. The only requirement on this set
is that Py, the point with unit coordinates, should be expressible as a
linear combination in which the points in the set appear with positive
weights. We note that all the elements in the P; column are greater
than unity. Hence a selection such as Py, Pg, Pg, Py, Pig, P1p will
gatisfy the requirement. This is the original basis which was, some-
what arbitrarily, selected. The result is shown in Table III. For
example, the Py line in Table III is equivalent to

Py = 0.370P 4+ 0.967P¢ + 0.348Pg 4 1.189P; + 2.583Py; + 4.926P,.

TasrLe III. Tue TwaiLve Points oN THE ORIGINAL Basis

Basis, Py P1 P Py Py Py, Py Py Pg Py Py Py
P, 10.3710 1 1,396 2.333 23.582 4962 0 —0.370 0 0 0 O
Pg 0.967 0 ~1.107 0.338 3.073 6.348 1 -1.865 0 0 0 0O
Py 0.348 0 2,382 4.802 T7.164 9.071 0 -~1.347 1 0 0O O
Py 1.180 @ 4.650 11.088 17.588 23,305 0 -—-2.187 0 T O O
Py | 2.593 0 7.241 18.860 32.142 44.091 O -—-3.580 0 0 1 O
Py [ 4.926 0 10.286 28.808 52.162 76.602 0 —5.920 0 0 0 1
8 0.370 1 1.396 2.333 3.592 4.962 0 ~0.370 0 0 0 O




352 "R. DORFMAN [paRT IV

In matrix notation, this may be written

0.370"7

0.967

0.348

Py = [Py Pg Py Py P1g Py4] Lise I’

2.503

| 4.926_]

or '

C531 —1 0 0 0 0]f03707 [T
270 0 0 o0 o0 0 097! |t
364 0 —1 0 o0 0]|l03a8] |1
Po=t4501 0 o0 -1 o ol 1| {1]
970 o 0 0 —1 o0ll2m3| |1
(600 0 o o o —1dlaozel L1

This checks with the Py column of Table 1. Similarly, from Table II1,
P, = 1.396P, — 1.107Pg + 2.382P5 + 4.650Py + 7.241P;, + 10.286P;,.

In matrix notation,

 1.3967]

—1.107

Py = [P, Ps Pg Py P1g Pui] 23821

4650

7.241

| 10.286_

or

531 -1 0 0 0 O 13967 [ 8.52°
270 0 0 0 o0 0l —1107 3.77
364 0 —1 0 o0 o0f 2382 | 27
Pa=l 501 0 o0 -1 o ofl aes0| | 360/
970 © 0 0 -1 o] 7.241 6.30
(1600 0 o o o —1Jl 10281 Li2os.

This checks with the P; column of Table II.
In this manner, each column of Table ITI shows one of the twelve

“points” of Table I as a weighted sum of the six selected points which
form the “basis.”
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In Table ITT each of the twelve points under consideration has been
expressed as a linear function of gix of them. Two aspects of this
table should be noticed. First, all the coefficients in the Py column,
which ecorresponds to the right-hand side of equation (5), are positive.
This shows that a set of u satisfying equation (4) has been found. A
basis which'fulfills this requirement is known as a feasible solution.

1t should be remarked that in a matrix of this sort there is never any
difficulty in finding a feasible solution. All that is necessary is to find
a column all of whose elements are at least equal to unity. If no such
column exists, the situation can be remedied by adding unity to each
of the elements of the game matrix. This will not alter the solutions
obtained, though it does increase by unity the value of the game.

Secondly, attention should be drawn to the S-line at the foot of Table
111, which is related to the S of equation (6). This line is defined to be
the sumn of the entries on the lines corresponding to points Py, Py, - -+,
P in each of the columns. In the present instance, since only P; and
points beyond Py oceur in the basis, it is simply the entry on the P, line.
We shall denote by S; the entry on the S-line of the point P;. The entry
in the Py column of this line is the 8 of equation (6). The use of the
other entries on this line will be explained below.

Now, to each set of six points constituting a feasible basis, there will
correspond a certain value of 8, which will appear at the bottom of the
P, columan. The problem, as set forth in equation (8), is to find the
feasible basis to which corresponds the smallest possible value of S,
This is done by starting with the basis already found and substituting
one of the excluded points for one of the points in the original basis,
thus obtaining a new basis which has five points in common with the
old one. The formula for shifting the basis is given in the Appendix to
this chapter.

Naturally, the point to be deleted and the point to be added must be
selected in such a way that the revised basis satisfies two requirements,
namely (i) it is a feasible basis, and (ii) it corresponds to a smaller value
of 8 than the original basis. This is accomplished by the following
procedure: 2

(a) Introduce into the basis the point selected as follows:

(1) For points Py, -+, Pscompute S} =8; —1 (=1, ---,3).

(2) For points Ps, «-- , Py take 8 = 8; (¢ = 6, -+, 11).

(8) Introduce the point with the largest value of §', provided that
it is positive. If there is no positive value of S', the basis at

2 The mathematical justification of this procedure has been given by Dantzig
[XX1).
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hand is the best possible one and constitutes the desired solu-
tion. In the case under diseussion, point Py is to be intro-
duced.

(b} Delete from the basis the point selected as follows:

(1) Divide the values in column Py (the point to be'introduced)
by the values on the corresponding lines of column Py,
(2) Find the row that has the largest ratio. The point corre-
.sponding to this row is the one to be dropped. In this case
it is the point Ps.

(e) Caleulate the change of basis by the formula given in the Appendix
to this chapter,

{d) Repeat the process of changing the basis one point at a time until
there are no positive values of &'.

(e) The weights of the points in the Py column are then the desired
values of u, and the S-value of the Py column is the minimum possible
value of S.

The work in the present instance required four changes of basis.
Kach change of basis required n(m + 1) = 6(5 + 1) = 36 multiplica-
tions and a corresponding number of subtractions. Thus the total
computation required 144 of these basic operations, finally resulting
in the weighting shown in Table IV.

TapLE 1IV. 'Tae TweLve PoinTs oN THE FInan Basis

Basis| Po Py P Py Py, PyPyaP; Py Py Py Pn
Py 0.057 1 0.677 0,339 0.045 0 0 0 O 0.115 —0.174 0
Ps 0.109 0 -—-0.066 0.115 0.562 1 0 0 0 —0.279 0©0.170 0
P 1.495 0 —6.257 —7.038 —4.533 0 1 0 0 —4.959 2.478 0
Py 0.645 0 —2.838 —3.842 —2.058 0 0 1 0 -23.426 1.811 0
Py 0.191 0 -0.8290 —1.314 —0.692 0 0 0 1 —-2.074 0.81 0
P [0.215 0 —1.303 —2.7566 —3.083 0 0 0 O 1.106 —2.324 1
S 0.166 1 0.611 0.454 0.607 1 O 0 0 -—0.164 —0.004 0

This table indicates that strategies 1 and 5 are the only ones which
occur in the optimum mixed strategy for player z, and they oceur with
weights

z; = 0.057/0.166 = 0.343, x5 = 0.109/0.166 = 0.657.
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This application of the simplex method rests on two assumptions. To
discuss the first, let n represent the number of strategies available to the
minimizing player. Each of the maximizing player’s strategies may then
be represented by a vector of n -+ 1 components. The first of these
components would be unity if the strategy being represented were real,
and zero for a dummy strategy. The remaining elements of the vector
would be the entries in a column of the payoff matrix, such as the one
illustrated in Table II. In these terms, the simplex method assumes
that every set of n 4 1 of such vectors constitutes a linearly independent
set. 'The procedure is valid even if this assumption is not satisfied, but
then the optimum solution is not necessarily unique. In fact, there
may be an infinite number of mixed strategies all yielding the maximum
value of the game if the vectors are not linearly independent.

The second assumption is more crifical. It states that the first column
of Table IT, the column consisting of 1's, is lincarly independent of
every set of n — 1 of the following columns. If this assumption is vio-
lated, the line of reasoning behind the simplex method fails. It appears,
nevertheless, that, if the simplex method is applied in such a case, it
will lead to the correct solution. A satisfactory proof of this assertion,
however, remains to be found.

3. Ture MiNmMizmvG PLAYER

At the Linear Programming Conference, Herman Rubin pointed out
that this caleulation, which is made from the viewpoint of the maximizing
player, yields simultaneously an optimum strategy for the minimizing
player. In fact, the entries on the S-line of Table IV are proportional
to the probability weights in the minimizing player’s optimum mixed
strategy.

This becomes evident once it is noticed that the essence of the simplex
calculation is to select the set of “good” strategies for the maximizing
player and to attach probability weights to those good strategies in
such a way that, no matter which pure strategy the minimizing player
uses, the value of the game will be at least equal to a certain amount.
The good strategies are the real strategies which appear in the final basis.
The real strategies which do not appear in the final basis are not good
strategies and, of course, receive zero weight in the optimum mixed
strategy.

The computation at the same time reveals the good strategies for the
minimizing player. This can be seen as follows: Let us assume that
the maximizing player has % good strategies (in the example, & = 2),
and for convenience Jet us assume that the strategies have been numbered
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in such a way that the first & are the good ones. Ther all the maximiz-
ing player’s strategies beyond the first k may be disregarded; they will
never be used. The simplex computation has produced a k-component

vector of weights, %, us, - - - , u such that
a;y @ o an || 1
a a O/ | 1) 1
12 22 k2 2 g
@n Gon ' OCrad Lz 1

The result of the multiplication on the left side of this expression is a
column vector. The first element of this vector is proportional to the
value of the game if the maximizing player uses his optimum mixed
strategy and the minimizing player uses his first pure strategy. The
second element is proportional to the value of the game if the maximiz-
ing player uses his optimum mixed strategy and the minimizing player
uses his second sérategy. Each line of the inequality thus gives a value
proportiongl to the value of the game for one of the minimizing player’s
strategies. The set of good strategies for the minimizing player consists
of those of his strategies for which the element in this vector is as small
as possible, namely equal to unity. Now, the final basis found in the
simplex caleulation included n strategies, real and dummy together, of
which we assume that k are real and n — % are dummy. Since there
was a total of » dummy strategies, k& of them were excluded from the
final basis. But the exclusion of a dummy gtrategy from the final basis
requires that the equality, rather than the inequality, hold on the line
in which its nonzero element occurs. Thus the equality holds on k lines
of the expression just given. This indieates that the minimizing player
has k good strategies, and these are the ones for which the corresponding
dummy vectors are excluded from the final basis.

In the example under consideration the excluded dummy vectors are
Py and P1p. The nonzero element of Py occurs on the line corresponding
to the minimizing player's strategy 4, and the nonzero element of Pyg
occurs on the line corresponding to the minimizing player’s strategy 5.
These are the two strategies which make up the minimizing player’s set
of good strategies.

Now, just as the maximizing player uses only good strategies in his
optimum mixed strategy, so does the minimizing player. And just as
only columns of the basic payoff- matrix which correspond to good
strategies for the maximizing player occur in the final solution, so only do
rows which correspond to good strategies for the minimizing player. It
will be assumed also, for convenience, that the good strategies for the
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minimizing player eonstitute his first k. Since the equality sign holds
for all rows corresponding to the minimizing player’s good strategies,
the requirement on the w-vector may now be written

11 Qa1 e 239} iU 1
Gy Ogg - Gpg| | Ug 1
@ g - Gged Lug 1

The pure strategies which enter into the minimizing player’s optimum
mixed strategy have now been identified. They are the ones correspond-
ing to dummy strategies excluded from the maximizing player’s final
basis. But the probability weights to be assigned to these strategies
remain to be determined. These weights are determined from the
following condition: If the minimizing player adopts his optimum mixed
strategy, the expected value of the game must be independent of which
pure strategy the maximizing player selects from his set of good strategies.
This can be expressed algebralcally Let W = (wy, wg, --- , wp) bea
vector proportional to the minimizing player’s optimal mlxed strategy,
and let A* denote the k by % submatrix of A which corresponds to the
sets of good strategies for both players. Then the requirement is that
W’'A* = 1;, where 1 is a column vector of & elements all equal to 1.

Tt will now be shown that the line S of Table IV satisfies the require-
ment on the vector W. The simplex solution consisted in expressing
the strategies excluded from the final basis in terms of those strategies
included in that basis. In so far as the real strategies included in the
basis and the dummy strategies excluded from it (there are & of each)
are concerned, it consisted in solving A*Q = —1I;, where I is the
k-rowed identity matrix. Evidently @ = —A*7?, and the Sline of
Table IV is simply 8’ = 1,Q, whenee

— = 1A,

—8 be substituted for the W-vector it is seen that the requirement
is satisfied. 'Thus the negatives of the entries on the S-line of Table IV
in the columns corresponding to the dummy strategies excluded from the
final basis are proportional to the weights in the minimizing player's
optimal strategy. In the example the entry at the foot of the Py column
is —0.164 and the entry at the foot of the Py column is —0.004. Thus
the probability weights for the minimizing player are

ys = 0.164/0.168 = 0.976,  y5 = 0.004/0.168 = 0.024,
since 0.164 -+ 0.004 = 0.168. ‘
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APPENDIX

Formula for changing basis. Suppose that there are S points expressed on the
basis of n of them, n < 8, and suppose, for simplicity of notation, that the » points
in the basis are those numbered 1, 2, -+ , n. Then each point is expressed in the
form )

Pt'=Clt'P1+C2iP2+"'+CniPn {":=1!2:"'1‘S‘)-

Now let it be desired to delete the point P; from the basis, j = n, and substituie the
point Pi, n <k = 8. The caleulation is as follows:

) Pi=Ch'P1+'°°+Cj;’P,'"{"'---!-C,“'P“ ("::1:2:"'18);
@ 0 = CPy +--+ CpPs 4+ -+ CuiPr — Pio
Multiplying equation (2) by Cj;/Ci, we get

PP

@) Oﬁmﬁ%PrP e CiiPi 4o A Gt G
ik

Subtracting this from equation (1) gives

C:u) Gii
P,

Cir T x C,;;

Equation (4) is the formula for the n points on the new basis, 1, 2, -+» , j — 1,

.7+11 e :n,k°

@ p=(cu- cuiﬁpr+ 4 0-Py -+ (Coi = Cu
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APPLICATION OF THE SIMPLEX METHOD TO A
TRANSPORTATION PROBLEM!

By GeorcE B. DanNTtzI1G

A number of years before the Air Force generalized the work of
Leontief to make it applicable to highly dynamic situations, Hitcheoek
(1941} and Koopmans [XIV, 1947] independently considered an interest-
ing special case: A homogeneous product is to be shipped in the amounts
a4y, G, **- , Gm, vespeetively, from each of m shipping origins and re-
ceived in amounts by, b, - - - , ba, respectively, by each of % shipping
destinations. The cost of shipping a unit amount from the ¢th origin
to jth destination is ¢; and is known for all combinations (7, 7). The
problem is to determine the amounts x;; to be shipped over all routes
(Z, 7) so as to minimize the total cost of transportation. In Table [
it is elear that x;; must be chosen so that the rows sum to the marginal

Tapre I, ProGRAM OF SHIPMENTS

\ Destinations
Total
Hole| .| w
a Wi zn | me | -+ | 21 a
:Eo (2| = Tgp S -~ ag
o
M) Tm1 | Tmz | -- | Tmn Om
m L]
Total b be [ b Eai =Eb,
= =

1The author is indebted to Emil D. Schell for assistance in preparing earlier versions
of this chapter.
3569
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totals a; and the columns to b;. The basic relations that must be satis-
fied are

(D Zx@'f:ai (?'.':1;27""7"'):
=1

(2) ' zxi:i=bi (j=1:21“':n):
3=1

(3) T 2 0:

(4) z Z Cig¥iy = min.

=1 j=1

The linear programming problem concerns itself with minimization
(maximization) of a linear form whose variables satisfy a system of linear
inequalities. Usually in practice this problem is encountered in the
above standard form, namely, as the minimization of a linear form of
nonnegative variables subject to a system of linear equalities.

1. APPLICATION OF THE SiMPLEX METHOD

According to the general theory [XXI], if there are k& independent
equations in [ variables, a solution (provided one exists) which minimizes
the linear form can be obtained that involves at most &k variables with
positive value while the remaining { — ¥ variables vanish, Chapter XXI
establishes this under the condition that every determinant of &kth order
is nonvanishing. This condition is not satisfied in the transportation
case; however, an earlier version of this chapter contains a direet proof
of this theorem which can be slightly altered to remove this restriction
[XXI, Theorem A; see also XV]. The method of proof is to show that, if
any feasible solution involves more than k variables with positive values,
the number can be reduced.

It is not difficult to show that the m 4 n equations (1) and (2) con-
stitute m + n — 1 independent equations in mn unknowns. Thus the
minimizing selution requires at most m 4+ n — 1 routes with positive
shipments.

It is useful to reformulate the transportation problem in terms of a
system of activities that have various items in common. The activity
of shipping the homogeneous product from 7 to j will be denoted by 4;;.
To sustain a wnit level of this activity, one unit of the product at the
ith origin is required as input, and one unit at the jth destination will
be made available as output. We shall by convention use 4 to indicate
flow toward an activity and — to indicate flow away from an activity
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of an item. Thus, if m ““origin” items and n “destination” items are
defined, a unit of activity A;; is characterized by a vector with 41
(input) for origin item %, —1 (output) for destination item j, and 0 for
all other items. We shall use the same symbol to denoie an activity
A;; and the vector associated with unit amounts of the activity A4;.
The elements of the vector 4,; are shown in Table II.

Tasrg I1. FueMENTS oF Ay

Item = [ (dy) =+ ()| Bo
Origin
1 0 0 0 )
2 0 0 0 [ )
3 +1 +1 0 @&
m 0 0 i} [
Destination
1 0 0 0 -
2 0 0 0 —be
j -1 0 -1 | b
T 0 0 0 ""bu

It will be noted that, if a dummy activity, &, is defined with +1 for
origin item ¢ and 0 elsewhere, and similarly »; is defined with —1 for
destination item j and 0 elsewhere, all mn activities have a simple
representation in terms of this basic set of m 4+ n dummy activities:

(5) Ay =&+ ny

. A feasible solution consisting of m + n — 1 combinations is easily
obtained provided only @; 2 0, b; = 0, and > a; = b, For example,
A can be chosen first and z;; units of this activity performed, where
zy = min {ay, ;). If a; < by, then obviously all other z;; in the first
row of Table I vanish, and the corresponding n — 1 activities are ex-
cluded from the feasible solution. Deleting the row and replacing b,
by b; — @y reduces the rectangular array in Table I by one row. (If
a; > by, the other elements in the column would be deleted.) Continu-
ing this process, a row or column will be deleted and one activity selected
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at each step until only one row or column is left. Thus, if, for example,
in k steps m — 1 rows and & — (m — 1) columns have been determined,
the remaining n — [k — (m — 1)] activities in the last row will be uged
to complete the set of activities in the feasible solution. Accordingly,
E+n—lk—(m—-—1]=m+4+n—1 activities have heen chosen.
The possibility of one or more z;; = 0 in the set of m 4+ n — 1 activities
is not excluded.

Moreover, A,; is followed by 4,3 (or Az,) and 4,, followed by 4.5
(or Agz), ete. In general, 4; is followed by A1y or Agyny;. Itis
thus a simple matter to express the dummy activities in terms of the
activities of the feasible solution. If Ay, A1y, Ass, Ago, Asz, ete., appear
in the solution, then we obtain, by taking differences of activities as they
are genersted,

n2 — m = A2 — An,
b2~ & = Agy — Ay,

(6)

£3 — &2 = Agg — Agy,

3 = Nz = A33 - Aaz:
so that £ — &, &3 ~ &, -+, &5 — £z Will be determined in turn, as
well a8 92 — m, -+, 9 — 9a—1. We may thus directly express any

£; and #; in terms of the activities of the feasible solution. Denoting
the activities of the feasible solution by By, Bg, - - - , Bpyn_1, and making
use of the relation y; = B; — §, it is a straightforward matter of sum-
ming differences on either £; or %; to obtain a solution of £; or »; as a linear

combination of the vectors By, By, -+ , Bpin_1 and £:
m+n—1
E=HT 2, MabB (i=1,2.--,m),
. kel
(7) mtn—1

N = -5 + E ﬂjkBk (J=1: 2: e !n):
k=1

where A\; and uz;, are constants. Moreover, from (5) any A;; is given by
m+n—1
(8) Ag = kE (At + i) Be.
=1

The fundamental approach of the simplex technique is to express all
activities in the system in terms of a basic set of activities constituting
a feasible solution. This has just been done. There are thus two ways
to accomplish an sactivity A4;;, either directly or indirectly as a linear
combination of activities By. In (8), however, the coefficients can be
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positive or negative. This is interpreted to mean that one unit of 4;;
can be done by doing (A\;; + p;;) units of By, (\;a + pje) units of B,
etc. When the coefficient of B, is negative, it means to decrease the
number of units of By by this amount, if possible, in some system in
which By, By, - -+, Bpyn_; are being performed at some positive number
of units. .
The next step of the method is to “cost’”’ the direct versus the indirect
way of doing one unit of A;;. The direct cost of one unit of 4;; is e,
" the direct costs of By, By, - -+ , By.yn—1 Will be denoted by cq, e2, - - -,
Cmtn—1; 1€, if By = Aq;, then ¢; = ¢11.  The indirect cost of A;; will
be denoted by &;,
m-t+n—1
9 Ei= 2. (et wwer = us + vj,
k=1
where u; and v; “cost” the dummy activities £; and j,
(10) = Niytg +--- » A, m4n—1Cm4n—1 ('5 =12 -, m),
v = pjpc + -, F oy mgn—1Cmin— (3 =1,2, .-+, n).

The general theory states that if
(11) i < E.,'J'

it pays to introduce A;; and to drop one of the activities By, By, --- ,
Brnyn_y from the feasible solution. Which one to drop will now be
discussed.

Let x1, 23, - -+ , Tm4n—1 be the number of units of By, By, *++ , Bpuyn—1
in the feasible solution; then
(12) z1By + 2By ++ -+ Zmpn_1Bmin—1 = Bo (z; > 0},
where By 18 the column veetor ay, -, Gp, —by, -+, —b, (see Table

ITy. It will be noted that x; is assumed positive. The case where ohe
or more r; = 0 will be considered degenerate and will be discussed later.
The total cost of the solution given by (12} will be denoted by zo;

{13) zi61 + Zaco + -0, +Bugn-1lbmin_1 = 2p.

Assume ¢;; < &;; for some 4;;, and rewrite (8) and (@) as

(14) AiJ' - (I'IBI + Vsz +---4 Vm+n—le+n—1) = 0:
(15) ey = (mer + vace +- - F Pmgpn—1Cmgn—) = — (&5 — Cij),
where

(16) ve = Aip + pgre
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By multiplying equation (14) by ¢ and adding this fo (12), other
feasible solutions are obtained provided ¢ > ( and @ is not so large that
any coefficient of B; is negative. By multiplying (15) by ¢ and adding
this to (13), the corresponding cost, z;, of the new feasible solution is
obtained;

(17) 2y = 29 — 88 — cij),

which by (11) is clearly less than z,.

Now there is a very simple rule for evaluating the largest value of 6.
Referring back to (8), (7), and (8) it will now be shown that the values
of Ay and pj are either 0, +1, or —1. I Ay = +1 for any B, then
eix = 0 or —1, because in (6) the 4;; does not appear with the same sign
for differences involving £ and 5. To put it another way, coefficients
in (8) are either 0, +1, or —1. Moreover, if (8) is used 1o eliminate
any Bj, from (7) in order to express £; and 5, in terms of the remaining
By, and the new Ay, it is clear from the structure of A4;; that the same
properties will hold after the elimination. Thus all coefficients in (14)
are +1, —1, or 0. Any »; = +1 in (14) will automatically place a
restriction on the size of 8. The maximum ¢ is thus the minimum x;
in (12) whose corresponding »; = +1 in (14). Therefore

(18) 6 = min z;, y; = +1.

If the minimum oceurs for ¢ = k, then B will be eliminated, and the
new solution consists again of m + » — 1 activities.

The new feasible solution has z; increased by 6 for »; = — 1, decreased
by @ for »; = +1, untouched for »; = 0. There will be 8 units of A4,
Antroduced. The cost of the new solution is given by (17). The “cost”
of the dummy activities ¢ and #; given by (10} will be decreased or
increased by +(&; — c;;), or remain unchanged accordingly as the coef-
ficients of By in (7) or of ¢ in (10) appear equal to +1, —1, or 0, respec-
tively. It should be noted that, if any w; is increased; no »; can be
increased and conversely.

The selection of A.; to improve the feasible solution depended on
¢;; < &j. The improvement in z, however, may be small or large
depending on which A;; is chosen. Tt has been found empirically that
selection of 4,; such that

(19) : Ci;j—€Ci;=max (E=1,---,mji=1---,n)

will seldom introduce or eliminate an activity that is not in the final
solution. Other criteria for selection of A;; are discussed in Chapter
XXI.

The process described is iterated, each iteration producing a new
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feasible solution involving m + n — 1 activities. For each iteration the
value of z, the total cost, is decreased. In a finite number of steps an
optimum solution is obtained, since the solution at each iteration is
unique, and there is only & finite number of ways to choose a basic set
of m + n — 1 activities.

2, Tue Case oF DEGENERACY

If for any iteration several B, are eliminated, the general rule is to
treat only one as eliminated and leave the others formally in the solution
even though they appear with zero weight. A criterion will now be
developed for the determination of the By with zero weight to be dropped
from the basic solution. This is necessary, because it is not known
whether an arbitrary selection will lead to a decrease in total cost in a
finite number of iterations. In empirical examples arbitrary selection
has proved to be a good working rule. However, for & slight amount of
additional effort, one can protect oneself apainst possible failure of the
method in degenerate eases. The fundamental idea is that by slight
modifications of the marginal totals, a; and b;, in Table I, degeneracy
can be avoided in a family of equations whose marginal totals differ
uniformly from the corresponding a; and b; by less than any desired e.2

Any basic solution consists of m + n — 1 combinations, and, in case
of degeneracy, it involves one or more éombinations with zero weights.
When this oceurs, it implies that a partial sum of the a/s equals a
partial sum of the b;’s. The proof can Be argued as follows:

Let m = n; then there is at least one row in Table I which contains
exactly one Bj from the basic solution (there must always, of course, be
one or more for each column or row). Otherwise the number of A
in the basic solution would be at least 2m, which would require 2m <
m—+n—1,0orm £ n — 1, iLe, a contradiction. Thus one of the rows
yields z;; = a;. Deleting the ith row and replacing b; by b; — a;, the
process may be repeated with the reduced array. With each iteration
the new row or column totals differ from the previous ones by one differ-
ence, a; — b; or b; — a;; in terms of the original ¢, and b/'s the new «;
and b; are differences of partial sums of the original a; and b;. Thus,
if at any stage an z; = 0, this implies the vanishing of both the new
a; and b;.

 The specific way to alier the marginal totals by e to avoid “degeneracy’’ problems
has been introduced in this version, although it was indicated as possible in earlier
papers. This extension was stimulated by Robert Dorfman and Merrill Flood, as
well ag by Tjalling C. Koopmans and M. L. Slater, the referees of this manuseript,
who have insisted that the status of degeneracy be clarified.
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Thus degeneracy can be avoided if we can prevent any partial sum of
the a,’s equaling a partial sum of the b;’s. Consider a class of problems
with unspecified ¢ in which

@ =a;+ ¢ ('i=112:"':m)!
(20) E - [bJ (j = 1: 2: T, 1)3
T by + me (j = n).

Assume € > 0. It will be shown that there exists an ¢, such that for
any ¢ in the range 0 < e < ¢ there can be no partial sum of @’s equal
to a partial sum of b7's. There are a finite number of possible equalities
of partial sums of &;'s to partial sums of b,’s. Consider the kth of these
possibilities; it will be shown that there exists a range 0 < ¢ < ¢ in
which D _@; s 2 ib;, where ¢ depends on the partial sums in question.
The sum of the coeflicients of ¢ associated with the &; cannot be equal
to the sum of the coefficients of € associated with the b;, for the sum on
the & side has a minimum of 1 and a maximum of m — 1, while the sum
on the b side is either 0 or m. Since the coefficients of ¢ are not equal,
by setting Y xd; = >_+b; we. can solve for e. If ¢ £ 0, set g = oo,
and if € > 0, set ¢z = e. There are a finite number of ¢'s. Le_t. € be
the smallest of them; then for 0 < ¢ < ¢, there is no partial sum of
d;'s equal to a partial sum of b;’s.

For any basis, the general solution {%} to (i, dg, -+ , @m; b1, by,
.++ , b,) can be represented as the sum of two special solutions; the
first, {xx}, for (a1, @s, -+ , @m; by, ba, --- , by), the second, {zi}, for
the coeflicients of ¢, where k = 1,2, --- ,m 4+ n — 1. Thus

(21) By = x5 - Tye k=12 -, m+4n~1).

In the shift from one basis to the next, the use of % constitutes a small
additional effort over just working with & alone. This device may now
be used to resolve all ties (i.e., equalities, that give rise to degeneracy).
Suppose, for example, that in (18) 6 = 23 = z;; then the min [, #]
is chosen by comparing the value of z; with z,.3

3 It has been proved by A. Orden that the following proeedure for assigning a fixed
value to e removes degeneracy and is convenient for computation. Let 3 equal the
least significant digit in the shipments e; and b;. Take e equal to the largest signifi-
cant digit in &/2m. This € used in (20) permits no equalities of partial sums. All
computations are done on the bagis of 4;and §;. These artificia} shipments have more
significant digits than the original problem. Upon completion of the computations,
the final Z;; values are rounded off to the same number of significant digits as in the
original a; and bj, and the results are then an exact minimum cost solution to the
problem.
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A solution which minimizes the total eost will be reached in a finite
number of iterative steps because the removal of degeneracy by the e
technique makes it impossible for a basis to appear more than once.
With degeneracy removed, the total cost must decrease at each stage of
iteration, which would ne be true if a basis were to recur. Since the
number of possible bases is finite, a minimum cost solution must be
reached in a finite number of iterations.

3. Ruies ror CoMPUTING AN OprmiMum SoLuTionN

(a) Construct a unit cost table giving the cost, ¢;;, to ship a unit
amount from shipping origin ¢ to shipping destination j. In the example
(Table 1II), the cost to ship from origin (2) to destination (1) is 5; from

TapLe [11. Direcr Unit Coars, o

\ Destinations

}{ Wlt@lei @ o

Eo mi 3 2 1 21 3
Sl@y 5|43 |-al1

L @y 0] 21| 3 41 5

origin (2) to destination (4) is —1. No interpretation is given to nega-
tive cost, except to show that there is no restriction on the sign of ¢;;.
A constant amount may be added or subtracted uniformly from all ¢;;
without affecting the values of x;; appearing in the solution. In Table
IV the total amount to be shipped is 13. If all ¢;; were increased by 2,
the total cost of transportation would be increased by 2-13 = 26.

TaeLg IV. AMOUNTS TO BE SHIPPED

\ Destinations Total

NMloieo|loelew]| e &
.gn (i zn T12 xi3 T T15 1+
S |@]| au Toy Ta Z2s T 5+ ¢
3| @ T2 *33 T3 T35 T+ e
Total | b; 3 3 3 2 243 | 13 + 3«
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(b) The basic problem is iltustrated in the shipping table of the exam-
ple (Table IV). Unknown' values, z;; = 0, are to be selected so that
the row totals sum to a@; = 1, a2 = 5, az = 7, and the column totals to
by = by = bz = 3, by = bs = 2 in such a manner that 37,327 jemy;
is a minimum. For computation purposes Table 1V should be set up
leaving the boxes for z; blank. To avoid degeneracy, a; and b; are
considered the limits of @; and b; as ¢ ~» +0, where (1) &; = a; + ¢
for=1,2, -+ ,m and (2) b;j=bjforj=1,2 +-- , n—1 and
55=b,--l-'nzeforj=n.

(e) An arbitrary basic solution is obtained (Table V) by assigning a

TasLe V. ARBITRARY Basic SoLuTion, Z;;

\ Destinations Total
YNlo|lo|le|w]| e | &
2 lml1+. 14 ¢
S @] 2—c!3+0e|0+2 5+ e
3| 33— 2e|2 4 0e| 24 3¢ T+ e
Total| b; | 3 3 3 2 243 | 13+ 3¢

value, £, = min (&, b;) as ¢ — +0. Inthe example3 + 0e > 1+
If @, is minimum, all other #;; in the first row are zero; if 8; is minimum,
all other &;; in the first column are zero. Deleting then, the evaluated
row or column, the procedure is now repeated with the remaining rows
or columns where the marginal totals are reduced by the evaluated part.

Actually there is no need to carry along the e pert of this solution unless
at some stage there s an equality when taking a minémum. TIn the example
such an equality took place in the third stage in evaluating zss = 3.
Thus there appears to be a choice whether to have (2, 3) or (3, 2) included
as next point in the basis. However, by going back and including the
¢ part of the solution, it is clear that (2, 3) is the next combination to be
introduced into the basis.

{d) Step 1, part I of the iterative process, consists in determining
the indirect unit cost table, ¢;;, associated with the basis. For any (4, )
appearing in the basis, &;; = ¢;;. Any other ¢;; is obtained through the
relation &; = u; + v;. In the example, start with any ¢;; from a basis
(e.g., ¢i; = ca4). Arbitrarily set u; = ¢;; and »; = 0; thus

Uz = Ca4, vy = 0.
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Consider next all ¢z from the basis that have a subseript in common
with c4; these are ¢33 and czs.  From this 23 and v5 can be evaluated by

V3 — ¥y = €33 — C34
V5 — Uy = C35 — C34.

Consider next all ¢z; that have subseripts in common with ¢33 and ¢;5;
this set consists only of ¢g3, whence

Ug — Uz = Ca3 — Cza.

Consider next the ¢i; with subseripts in common with ¢3; these are ¢,
and ¢gs, Wwhence
Uy — VU3 = £91 — Ca3,

Vg — U3 = €99 — Ca3.

Finally, the only ¢;; with subsecripts in common with ey and ¢g5 is ¢1y,
whence
Uy — Uz = €11 — Ca1-

The indirect unit cost table, ¢i;; = u; + v;, may now be formed. In
Table VI, step 1, the (¢, j) combinations oceurring in the basis are given
in bold-face type; for these, ¢; = ¢

(e) Compare the indirect cost table, &; = u; + »;, with the direct
costs, ¢;;, in Table 111, and form

M = max (&5 — ¢i;) = G — Ci

There are two possibilities: M > 0 or M = 0. If M > 0, select any
combination (k, I) such that é — e = M. This means that as many
units as possible, § = 6y, of combination (k, I) are to be introduced into
the transportation schedule, and the remainder is to be made up from
combinations in the basis. If M = Q, it means that the basis represents
the final solution, and no units of any other combination are to be intro-
duced. In Table VI, step 1, the element &4 is boxed to indicate M =
faq — €34 = 5. This is an arbitrary selection since, also, M = {33 — €31
= 5,

(f) Step 1, part IT of the iterative process, consists in determining the
solution of the transportation problem in terms of the combinations oe-
curring in the basis under one of two agsumptions: If M = &y — ¢ >
0, sn unknown number of units 8 = 6;, of combinsation (%, I), will be
assumed to oceur (if M i= 0, no units of any other combination will be
assumed to occur). The shipping table is solved in terms of the basis
by seeking a row or column in which only one element appears in the
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Tarre VI. ITERATIVE ProcEss OoF CosT MINIMIZATION
Step ¥
&5 2ij
3 2 1 g; 3 1 1
5 4 3 & 2 ¥ 0—f) 0 5
s 41 8| &| ® 3+6 | 2—81 E! 7
3 2 3 2 2 13
Step 2
& Zij
3 2| —41 %8| -2 1 e 1+ ¢
] 4| —21 -1 o 2—82—¢ 3 0-+8z+2¢ 54 ¢
9 3 4 5 o 3 2—f2—2¢ | 243 T+ e
— 1
3 3 3 2 243 | 1343
Step 8
i Zif
3 2 gl —3 8 1 1
6| 4 g —-1 0—83 3 p +83 5
ol -1 8| —¢ ] 2403 3 28y 7
3 3 3 2 2
Step 4
[ Tij
3 6| | & L—0s +84 1
-4 4] -1l -1 1 3—o 2 0404 5
0 8 3 8 5 3484 3 2—04 7
3 3 3 2 2
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Step 6
&ii £
& 2| —8i =3 —1 1
—4 L] —1| =1 1 28 2 1465
o| [8| 3| 8| & 3 45 | 3 [L=0g)
3 3 3 2 2
Step 8
(] xij
0 2 8| -84 —1 1
e o @ 1| [oa| +u 2 |2
o 9 8l -3 —1 3 148 | 3—66
3 3 3 2 2
Step 7
Eij Tii
of 3| [8] -]+ 1= |+t
0 2 8| ~1; 41 1 2 2
i 2 8| —1| +12 3 2407 287
3 3 3 2 2
Step 8
i Tif
—2 o 1| -2 -1 1
¢ 2 3] -1 +1 1 2 2
1] 2 3| -1 412 2 3 1
3 3 3 2 2
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basis (there is always one such in the larger dimension). Thusz;, = 1,
Zgg = 3, X34 = 2 ~ b1, xqa = 2. These variables are eliminated, and
the process is repeated with the remainder. The maximum value for 6,
that can be introduced equals the minimum z;; in which a term z;; — 6,
occurs. In the example, min z;; = 223 = 0 = 6. Thus shippirg com-
bination (2, 3) is to be dropped; this combination is the one boxed in
the right-hand table. The case where there is a mutltiple choice of com-
binations to be dropped is discussed in (g) below.

(g) If M > 0in any step k, the process (d), (e), (f) is repeated for step
k+ 1. A new basis, consisting of all the combinations oceurring in
the basis for step k, is formed by deleting the boxed combination in the
x;-table and introducing the boxed combination occurring in the ¢~
table. In step 2 there was ambiguity as to the combination (3, 7) in
our example to be dropped. Thus min ; = x5 = T3¢ = 2 = 6s.
In this case the € component of -d; and b; must be adjoined and a solution
tn terms of € obtained. It is not possible with this component to have
any ambiguity. Thus &34 < $3 for ¢ > 0, and combination (3, 4) is
the one to be dropped in step 3. If M = 0 in step k, the z;-table
represents the final shipping table.

(h) The total cost of any solution is given by Ye;zi;. A simple
formula for evaluating z from one step to the next is given in Table VIL.

TapLe VII. Evarvarivg Toran Cost, z

Step | 241 =2 — M@ | M = max &; — ¢y (]
1 z =52 * Mi=5 =0
2 2z = 52 Mz =10 g = 2
3 #3 = 32 My=9 & =0
4 2y = 32 Mi=9 6y =1
5 25 = 23 My =6 8 =1
6 25 = 17 L Mg=2 g = 1
7 zr = 15 M;=2 =1
8 23 =13 Mg=10

* Evaluated direotly, 2z = Zcggris.
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4, CoNCLUDING REMARES

The basis of the first step is characterized by &; = ¢;; for all (7, j),
go that it is the maximum cost basis. Only two of the seven combina-
tions in this basis were also in the minimum eost basis. Thus, as a
minimum, five additional steps or six total would be required to eliminate
the five wrong combinations in the basis. It took, however, a total of
eight instead of six steps. Unfortunately, on step 1 combination (2, 3)
appearing in the final basis was dropped and later had to be reintroduced.
Also, eombination (1, 2) was introduced in step 4 and later had to be
eliminated. Experience on large scale problems indicates that the
criterion of using max (¢; — ¢;;) to introduce a new combination into
a basis seldom selects combinations other than ones required in the final
basis, or seldom leads to elimination of a correct combination. This
does not mean that theoretical problems could not be ‘“‘cooked up”
where thig criterion is weak, but that in practieal problems the number
of steps has not been far from m 4+ n — 1.

The indirect unit cost table, é; = 4; + v;, is equivalent to Koopmans’
economic potential function [X1V, Section 2.3 and sequel]. (Table VII
of Chapter XIV gives the corresponding notations in these two chapters.)
Koopmans uses a linear graph to evaluate the potential function and to
determine what combinations to introduce and drop. This device was
used also in earlier versions of this chapter but was found diffieult to
use except in hand computations. The closest thing to a tree or linear
graph in this chapter is the method of computing &;;.



CrartEr XXIV

ITERATIVE SOLUTION OF GAMES BY FICTITIOUS PLAY

By Georcge W. Browy

It 1s the purpose of this chapter to deseribe and to discuss briefly a
simple iterative method for approximating to solutions of discrete zero-
sum games. This method is related to some particular systems of dii-
ferential equations, which have been considered, along with some other
systems of differential equations whose steady state solutions ecorrespond
to solutions of a game. Some of these and similar dynamical systems
have been considered independently by von Neumann and will be treated
in a joint paper [1950].

The iterative method in question can be loosely characterized by the
fact that it rests on the traditional statistician’s philosophy of basing
future decisions on the relevant past history. Visualize two statisticians,
perhaps ignorant of min-max theory, playing many plays of the same
discrete zero-sum game. One might naturally expect a statistician to
keep track of the opponent’s past plays and, in the absence of a more
sophisticated calculafion, perhaps to choose at each play the optimum
pure strategy against the mixture represented by all the opponent’s
past plays.

For caleulation purposes the rule used here is that strategies will be
named in turn for each side, choosing at each turn a pure strategy which
is optimal against the cumulated history of the opponent’s plays to date.
Stated algebraically, let A;; represent the matrix of payments from player
2 to player 1, let 7, and j, be the nth choices of pure strategies for the
two sides, let £™ and »{™ be the relative frequencies of strategies ¢ and
Jin (41, dg, -+, %x) and (1, jz, -+ , jn), respectively; then the rule
adopted is that j, should minimize Y ;™ A;; and n+1 should maximize
SiAgm™. If 4y is specified arbitrarily, this defines the sequence 7,
J1s %2y Ja, + - - recursively, except for possible muitiple extrema, which can
be handled by any convenient rule, for example, by ordering the strategies
for each player. Letting ¥, = min; 3¢ A4,; and V,, = max; 34,7,
it is readily seen that ¥V, < V < V,, where V is the value of the game.
If the method is to be successful it is to be hoped that ¥, and ¥, con-
verge to V or, at least, that their limits superior and inferior, respectively,

374
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are equal. The mixtures {£™} and {5} represent mixed strategics,
and the corresponding V, and V, are the most favorable payoff that
either player could insure by the use of the particular mixture indicated.

It should be elearly pointed out that practically no nontrivial prop-
erties of this iterative scheme have been mathematically established.!
All that is rigorously proved so far is that if the V, and ¥V, converge at
all they must converge to V. This is comforting, of course, but far
from sufficient to justify the method. Some support can be gained from
the relation the method bears, as a difference equation, to a set of dif-
ferential equations whose convergence can be shown to be like 1/f, where
¢ corresponds to n in the discrete version. In the system of differential
equations the convergence rests on the fact that tV(¢) and {V(f) main-
tain a constant difference between them. Further empirical support
can be drawn from the experience gained in using the method on a num-
ber of different examples, of dimensions up fo the now-famous diet prob-
lema {which reduces, in one form, to a 9 by 26 game). In the exarples
worked, the accuracy of the approximation, measured by the approach
of ¥V, and ¥, to V related to the range of the matrix elements, seems to
go essentially like 1/n. If this is indeed so, it is extremely important
for the solution of large matrices, by virtue of the fact that each iterative
step takes a number of operations proportional to the linear dimension
of the matrix, rather than to a higher power of the dimension, as in
other computation schemes which have been suggested. Granting that
for very high accuracies convergence like 1/n becomes painful, it may be
possible to use this method to get near, and some other method to finish,
the caleulation. It should also be pomted out that extreme precision
is ordinarily not required in practical applications.

The calculations required by this method are extremely simple.
Calculation of optimum strategies at each step does not require nor-
malization of the mixed strategy and payoff to make the sum of the
probabilities unity. Instead, we may simply cumulate the vector payoff
againgt 7, into the last cumulative vector sum, and similarly for the
payoffs against j,. Division of the maxima and minima by n to get
V, and V,, need not always be performed, but in any case this operation
would be negligible in time compared with the vector addition if the
dimensions of the game matrix were large.

The attached caleulation consists of 25 steps carried out for the 4 by 3
matrix in Table I and illustrates typical behavior of this iteration. The
values of ¥V, and V, were calculated for each step to show the progress
of the calculation in the early stages. The initial choice of 7; = 21is an

t It has since been shown by Julia Robinson thaf iterations of this kind must con-
verge. Her result will appear in The Annals of Mathematics.
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unfavorable choice with respect to minimum payoff to the first player
for a single strategy. In case of ties the lowest index has been chosen.

TasLe I. Game MATRIX

}Q\ 1 2 3
1| 3 1.1 | 1.2
2| 1.3 | 2 0
3| 0 1 3.1
4| 2 1.5 | 1.1

Note particularly that, while V. and ¥V, jog around considerably, the
difference between the maximum element on one side and the minimum
element on the other (nV, — nV,) stays practically constant.

TapLe II. CUMULATIVE PAYOFFS

n| de |j=1|3=2|i=8| Va | Vo [l 4u |[{1=1]i=2|i=8[i=14
1] 24§ 13| 200 |oO 3.1 3| 1.2]{0 3.1 1.1
2| 3| 1.8) 30| 3.1{0.65|2.1 || 1 | 42| 1.3} 3.1| 3.1
3| 1 | 48 41| 43| 1.87|1.77}f 2 | 58| 3.8} 4.1| 4.6
4| 1| 73| 62| 5.5|1.830|1.60| 2 | 6.4 53] 51| 6.1
5| 1 1103| 63| 6.7[(1.2671.521 2 | 7.5| 73| 6.1| 7.6
6| 4 |123| 7.8 7.8}{1.30|1.554 2 | 86| 9.3| 7.1| 9.1
71 2 |186| 98| 7.8fl1.11|1.46| 3 | 9.8| 9.3|10.2]| 10,2
8| 38 [13.6|108[109]1.35{1.46)|] 2 [10.9|11.3 | 11.2 | 11.7
9| 4 |15.6]12.83|12.011.33|1.591 3 |12.1|11.3| 4.8 12.8
10| 3 [15.6|13.83|15.1((1.33|1.58| 2 |13.2{13.3|15.3]|14.3
1| 3 [156|14.3|18.2(]1.30 | 1.48| 2 |14.3|153]116.83|15.8
12( 3 |15.6| 1531213 1.28|1.44( 2 |15.4|17.3{17.3|17.3
13 2 |6.9|17.3[21.811.30|1.48( 1 |18.4|18.617.3| 19.8
14| 4 |189]18.8] 2241 1.34|1.40| 2 [19.5])20.6|18.3| 20.8
15 4 [20.9120.3(23.5(1.35|1.50 2 [20.6]226|19.3!223
16| 2 [22.2|22.3|23.5(/1.89|1.562( 1 |23.6|23.9|19.3] 24.8
17 4 [24.2| 288 (24.6}/1.40|1.52] 2 |24.7|256.9|20.3; 25.8
18| 2 | 25.5|25.8(24.6|1.37(1.49] 38 | 259|259 |23.4|26.9
19| 4 |27.5]27.3 257 1.85]1.47} 8 127.1|25.9]26.5]28.0
20| 4 [29.5|28.8}(26.8(1.34/1.48|| 38 |28.3|25.9|29.6|20.1
21| 3 |29.5{208(20.9(1.40|1.49} 1 | 31.8]27.2|29.6]31.1
22| 1 (8253809 |31.1|1.40]1.48] 2 |32.4|20.2]|30.6]32.¢6
23| 4 |34.5(324{32.2]1.40f1.47( 3 |33.6|29.2]|83.733.7
24| 3 134.5(|338.4(35.31.30|1.47| 2 [84.7}81.234.7|35.2
25| 4 |36.5|34.9(36.4]1.40|1.47 2 |385.8|33.2|357]|36.7




Caaprer XXV

COMPUTATIONAL SUGGESTIONS FOR MAXIMIZING A
LINEAR FUNCTION SUBJECT TO LINEAR INEQUALITIES

By Grorge W. BrowN anD Tisrtrmag C. Koopmans

It is the purpose of this chapter to record suggestions that arose from
discussions between the authors and G. B. Dantzig regarding iterative
computational procedures for maximizing a linear function,

(1) y=czr
(y scalar, ¢ and z vectors), subject to linear inequalities,
2) op+axz0 (k=1 ---, K, a scalar, a; vector).

We distinguish two main cazes (1 and 2) and record in each case two sug-
gestions. At present, insufficient experience or theoretical knowledge
is available to assess the possible usefulness of these suggestions. No
proofs of convergence are offered. The general idea underlying the sug-
gestions is an attempt to make big jumps rather than “crawling along
the edges” of the convex set (2), as in the simplex method. It depends
on the set (2) whether in fact faster convergence is obtained. In com-
paring two different methods, it is usually possible to construct sets
(2) s0 as to favor one method as compared with the other. All methods
indicated are based on some idea of steepest ascent and thus depend on
the units of measurement of the variables .

1. Tae CASE IN WHICH AN INITIAL POINT xy SaTisryinGg (2) Is Known

1.1. Traversal method. Find the largest value 8y of the scalar @ such
that

®3) z = 20+ bc
satisfies (2), and write
(4) Fqg = xp 1+ Ogc.

377
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Then, if we insert Z, for z in (2), we must for at least one value, k,
say, of k, have an equality

(5) @, + a,;“fo =0

because otherwise values & > 8; could be found for which z satisfies
(2). If (5) is true for only one value of k, determine scalars Ay, uq, such
that

(6) ¢/ (Notix, + poc) = 0.

This is impossible only if ¢ = —w»a,, » a positive sealar, in which case &
already maximizes y. Determine 8, as the largest value of 8 for which
(7) z = &y + 0(hoaz, + poc)

satisfies (2), and write

&) 2y = £y + 38Nty + woc).

Proceed with x; as previously with 2y. If at the nth step more than one
value of k, of k satisfies, or nearly satisfies, an equation like (5), select
one arbitrarily, or use an average of all g, that satisfy (5) exactly, or
within a small amount ¢, under some rule of normalization used for the
vectors a.

1.2. Plane intersection method. Having obtained the point (4) above,
mtersect the plane

£t)] z = £ + Mg, + e

(» and p freely variable scalar parameters) successively with each of the
hyperplanes

(1m ap + apr = 0.

The intersections consist of K straight lines inside (9). The segments of
these lines on which (2) is satisfied form a convex polygon. On the
polygon select a point on which y reaches its maximum. Generally
there is just one such point, for which write Z,. Now there are two
variants.

1.2a. Plane determined by normal to the conver set (2). If x; is unique,
there are at least two values of k for which (10) is satisfied. Take any
one of these, or take their average, as a;, and proceed as in (9) with
¥ replaced by &,.

1.2b. Plane determined by normal within boundary of the convex set (2).
Having arrived close to the maximum, it may be desirable to attempt not
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to lose any of the equalities (10) once they are satisfied. Let #, be such
that

(11) a; + g, = 0 (b = Ky, ko, -+, B,
In the space of the vectors d such that

(12) d'ay, =0 ' r=1,-,1),
choose the veetor of sﬁeepest ascent, i.e., the vector d satisfying

(13) d'd =1, d’c = maximum,

and use that vector as g, in (9). This will have been wasted effort if
the resulting &, 41 fails to satisfy (11). Since iterations on this principle
become computationally more expensive as r, grows, the present. variant
should only be employed toward the end of a sequence of iterations.

2. How To OBTav AN InNrrian Poimnt Samsryving (2)

2.1. Successive penetration method. Take an arbitrary initial point, z,.
This point partitions the set S of inequalities (2) into two subsets, S, and
So, those of Sy being satisfied by o, those of Sj not being satisfied by z;.
If Sg is empty, the goal has been achieved. If it is not, select arbitrarily
an inequality of S, numbered kg, say. Use ay, as the veetor ¢ in (1)
indicating the ‘‘desired direction.” TUse the inequalities of Sy instead
of the full set of conditions (2), and apply any variant of the method in
Section 1 until a point is reached in whiech the inequality number kg
is satisfied. Call that point x; and proceed with a new subset S; of
the inequalities (2). Obviously

(14) S8 cC8 -,

If for any n a maximum z, of a; « subject to the inequalities of S, fails
to satisfy (2) for k = k,, no point satisfying (2) exists.

2.2. Guided penetration method. Instead of selecting an arbitrary ay
of 8; to be the ¢ in (1), take

(15) ¢ = 2, (& + o)

Oy
k.
keSh Qi

This is the vector sum of the normals dropped from z, onto the planes

(]6) (Of}a + akx) =0 (k GS').

Two alternative modes of proceeding from here are worth considering,
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2.2a. Keep the ¢ so selected constant while making a number of itera-
tive improvements to zp by method A, always requiring that the in-
equalities Sp be preserved.

2.2b. Be willing to sacrifice some inequalities of Sy if thereby a larger
number of inequalities of S; ean be satisfied. In this case determine 8,
in (4) in such a way as to minimize the number of inequalities in S

For neither of these variants certain attainment of the objective
(if attainable) has been proved. They might, however, work faster
than the successive penetration method. The second alternative is sus-
pect. if the convex set (2) is not bounded.
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Accounting prices, 65, 267
Aceounting profit, 65, 93, 184
Accounting revenue, 93
Activities, 35, 178, 193, 195, 261
additivity of, 20, 86, 147
basie, 29, 36, 155, 156, 166, 170, 171,
173
existence of finite set of, 36
linear combinations of, 36, 156
basic set of, 21
change over time in, 7
characteristic funetions of, 19
of a sealar multiple of, 19
as step functions, 20
circular relationship between, 17
combination of, 194, 265
discrete types of, 18
disposal, 40, 70, 179, 217, 218 )
economical, 263, 264, 266, 267, 271, 277
changes in, 266
efficient combination of, 8, 33
elementary, 6, 8
infinite set of, 6
eligible, 266
exchange, 91-93
exogenous, 8, 26
finite basis of, 6
hierarchy of, in triangular models, 206
industry as, 3
infinite class of, 21
infinite divisibility of, 20
interdependent, 16
intermediate, technological changes of,
276
labor producing, 2
leg-of-voyage, 227, 228
levels of, 25, 36
noneconomical, 266
as linear combinations of basic activi-
ties, 36, 166
managers of, 93, 95
method of production represented by,
261

Activities (cont.),
normalized, 156, 157
null, 21
opiimal selection of, 187
phasing of, 194
possible, 19, 20
prices of, 267
profitability of, 93, 184
profitable limits to the expansion of,
187
promoting technological change, 281
properties of, 36, 147
related to activities in preceding peri-
ods, 200
related to stocks, 200
round-voyage, 227, 228
storage, in program planning, 208
structure of, 193
sucecessive, seheduling problem of, 9
supporting, 16, 18, 205
time sequence of, 6
in transporiation model, 224
uneconomical, 263, 275
unused, 2
see also Processes
Additivity, 20, 36, 147
Aggregation,
of items in program planning, 215
optimal, 37
Aircraft production, 216
labor costs in, 217-219
model, linear, 217
see also Production
Allocation,
best, 1, 8, 15
centralized, computation problems of,
7
efficient, 2, 8, 38, 79, 96
critetia of, 6
in a planned economy, 95
optimum, 167, 171, 172
Allocation model,
independent of a market, 7, 8, 42
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Allocation madel (cont.),
price concept in, §, 42
profit in, 42
Allocation problems, systematic study of,
4,5
Allocative decisions, 93
centralized direction of, 6
decentralization of, 42
objective of, 38
Attainable cone, local, 83, B4
Attainable point, 79, 225
Attainable point set, 47, 54, 79, 150, 238
boundedness of, 87
in commodity space, 47
definition of, 79
relation of, to possible point set, 79
Autonomous expenditures, 139, 140
model of, 139
Availability restrictions,
conditions for efficiency under, 80, 82,
83, 86
definition of efficient points in the pres-
ence of, 89
efficient point set under, 79
price vector under, 83, 89, 901
on primary commodities, 60, 79
topological properties of efficient point
set under, 96

Basic activities, 29, 36, 156, 166, 170,

171, 173

Rerlin airlift, simplified model of, 195,
204, 205

Bill of goods, complete, conditions for
production of, 168-170

British Merchant Shipping Mission,
222 fn.

Bureau of Labor Statistics, 3, 18, 31

Business eycles, 119

see also Relaxation phenomensa
By-products, disposal of, 91

Capital, role of, in model, 42
Capital accumulation, 120
Capital coefficients, 118
Capital decumulation, 120
Capital equipment, 15, 195, 211
in linear models, 15
in program planning, 195, 211
Capital formation, in a closed model, 2
Capital stock, change in, 120

SUBJECT INDEX

Changes of basis, 354
in final demand, 3
in taste, 262
in technological possibilities, 279, 280
Choice,
of crop rotation, 177
economizing, 34
between linear processes, 103
managerial, 34, 41
optimizing, 34
formal properties of, 41
of processes, 109
studied by convex sets, 10
and technology, 33
Cireunit, 247
neutral, 248
Circular relationship bhetween activities,
7
Circular transformation of the flows of
empty ship movements, 248, 252,
253
Closure, convex, see Hull, convex
Cobweb problem, 116, 123
Cockaigne, Land of, impossibility of, 49,
52
Combined Shipping Adjustment Board,
4, 222 fn,
Commodities, 16, 19, 35, 261
classification of, 41, 53
custodians of, 93, 95
desired, 3840, 76, 79
primary factors as, 59
disposal of, 70, 179, 217, 218
divisibility of, 36, 147
elementary, 170, 172
final, 35, 38, 39, 52, 79, 82, 89, 225,
261, 267, 320
partitioning of, 81
in transportation model, 225
flows, 100
free, 7, 37
homeogeneous, 165
intermediate, 35, 40, 52, 59, 80, 224,
235, 261, 320, 329
efficiency prices on, 236
efficient point set in the presence of,
89
possibility of production with, 55
possibility of production without, 52
prices of, 83, 91
in transportation model, 224
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Commoedities, intermediate (cont.),
waste products regarded as, 40
maximization of a function of, 262
minimization of a function of, 262
negatively desired, 39
nonprimary,
negative net output of, 54
unavailability of, in nature, 79
primary, 60, 79, 89, 320
availahbility restrictions on, 60, 79
in transportation model, 225
stocks of, 1060
substitution between groups of, 68
technological change and, 279, 231
transfer of, 132
see also Factors
Cormmodity space,
attainable point set in, 47
consisting of final and primary com-
modities only, 60
efficient point set in, 35
partial ordering of points in, 38
possible point set in, 47
three-dimensional, 73
Commodity vector, 320
representation of, 157, 159, 160
Communication, administrative, 7, 192
Computation,
of efficient graph for empty ship move-
ments, 250
of efficient points, 79, 80, 85, 86
methods of, 12
iterative, 12
simplex, 12, 343
problems of, 12, 29, 57, 66, 80, 370
of centralized allocation, 7
of programs, triangular, 202
simplex method of, 12, 343
technitgues for, 202
of transportation problem, 12
use of function tables in, 215
use of punched-card equipment for, 210
Computer, electronic, 7, 17, 30, 194
for program planning, 202
Cones,
attainable, local, 83, 84
closed, technological horizon as, 171
convex nonpolyhedral, 102, 288, 205,
300
closed, 103, 171
dimension of, 200, 204

Cones, convex nonpolyhedral {cont.),

intersection of, 289, 203
lincality of, 204
nonnegative, 294
polar of, 289, 292, 293
relative boundary of, 302
relative interior of, 302
. sum-of, 288, 293
see also Cones, convex polyhedral
convex polyhedral, 10, 11, 47, 56, 179,
233, 287, 288, 290, 300, 302, 303,
305, 307, 308
boundary of, 302
decomposition of, into open facets,
11, 63
definitions of, 43, 289, 300
dimensionality of, 45 ‘
dimensionality space of, 44, 311
facets of, 68, 70-72, 312-316
frame of, 11, 43, 300, 303, 304, 307,
© 308, 310, 311
halfline of, extreme, 302
intersection of, 308
lineality of, 45, 200
lineality space of, 45, 310, 311
and linear inequalities, 287
matrix representation of, 43
negative polar of, 44
normal to, 51, 63, 72, 83, 92
orthogonal complement of, 44
pointed, 49, 52, 301, 305, 307, 310,
311
polar of, 44, 308
possessing a positive outward norma)
on the vertex, 51
relative boundary of, 45, 309, 312
relative interior of, 11, 45, 71, 236 fn.,
303, 309, 311, 316
solid, 45, 301
and subspaces, 304
sum of, 300
supporting halfspace for, 200
extreme, 291
supporting hyperplane for, 290
2n-dimensional, technological hori-
zon as, 114
unigueness of the frame of, 305
gee also Cones, convex nonpolyhedral
coordinate, 46
displaced, 87
polar of, 48
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Cones (conl.),
displaced, 46
negative of, 288
of normals, 64, 65, 71, 92
relative interior of, 71
possible, see Possible cone
Consumption, perfeet substitutability in,
264
Consumption-income ratio, 130
Convergence, 377
Convex polyhedral cone, see Cones
Convex gets, 10, 300
closed, 9, 158, 164
Cost coefficient, 237, 254
Cost,
marginal, 234
minimization of, 217, 240, 370
gocial, 109
of transportation commitment, direct
and indirect, 234, 254, 255
Cowles Commission for Research in Eco-
nomics, &
Crop rotation, 177, 178
choice of, 177
input-output table for, 184
profitability of, 182, 184
Cultivation, price margins of, 188
Custodians of commodities, 93, 95

Decision-making,
decentralized, 6
conditions for stability under, 94
efficiency under, 93
rules of behavior under, 93
in program planning, 193
Decisions,
allocative, see Allocative decisions
decentralized, 42, 92
production, in the firm, 95
Demand,
final, 16, 133, 134, 136, 138
changes in, 3
static structure of, 1
Diet, minimum-cost, 32
Diet problem, 375
Difference equation, 375
Differential equation, representing an
agymmetriec movement, 117
Dimensionality,
of cone, see Cones
of efficient facet, 66
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Dimensionality space;

of a cone, see Cones

of a set, 301
Dirichlet definition, 117 {n.
Discrete type of activities, 15
Disposal activities, 40, 70, 179, 217, 218
Divisibility,

of activities, infinite, 20

of commodities, 36, 147
Duality, 321
Dummy strategies, 350, 356

excluded from final basis, 357

Econometrica, 5, 116
Econometrie Society, 33 fn., 317 {n.
Fconomic observations, accuracy of, 282
Economie organization, problems of, 95
Economic statistics,
distortion of, 284
errors in, 282
estimation of, 282
Economice transformation, 99
Economy,
clozed, 108
plabned, 95
Efficiency,
of allocation, 2, 8, 79
conditions for, 60, 63
under availability restrictions, 80,
82, 83, 86
economic interpretation of, 65
under trading with an outside econ-
omy, 93
under decentralized decision-making,
93
of a facet, conditions for, 64
in preduetion scheduling, 4
Efficiency prices, 96, 235-238, 255, 256
and freight rates, 257
on intermediate commodities, 89, 236
interpreted as marginal rates of sub-
stitution, 238
of location of ships, 236
as market prices under competition,
256
normalized, 255
of ship appearances, 254
under trading with an outside econ-
omy, 91
uses of, by a central shipping aunthor-
ity, 255
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Efficient allocation, 2, 6, 38, 95, 96
Efficient choice, 34
Efficient. combination of activities, 8
Efficient facet, 6365, 232, 233, 237
dimensionality of, 66
normal to, 65
Efficient graph of empty ship move-
ments, 244, 248
computation of, 254
Efficient point set, 35, 36, 69, 70, 150,
157, 179, 182, 255
under availability restrictions on pri-
mary commodities, 79
in commodity space, 35
contractibility of, 76, 77
facets of, 183, 231, 232
in the presence of intermediate com-
modities, 89
in the reduced technology, 59
topological classification of, 73
topological properties of, under avail-
ability restrictions, 96 '
as transiormation function, 233
Efficient points, 28, 64, 76, 145, 152, 160,
164, 229, 261, 320, 329
under capacity restrictions, 237
computation of, 79, 80, 85, 86
cotresponding to transportation pro-
gram, 240
definition of, 60
in the presence of availability re-
strietions, 79
existence of, 87
frontier of, 145
possible program as, 28
representation of, 160
for transportation model, 230, 238
Efficient process, 106
Efficient production, 6
Efficient utilization,
of techhologieal possibilities, 35
of transportation equipment, 222
Electronic computer, 7, 17, 30, 202
Employment, 135, 138, 139
Entrepreneurs, 95
discontinuity in the behavior of, 118
Equation systems,
of Leontiel models, 134
simultaneous, representing economic
relationships, 17
Walrasian, 1
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Equations,
difference, 375
differential, representing asymmetric
movement, 117
homogeneous, 287
linear homogeneous, representing an
economic system, 133
Equilibrium, 108, 143
in a closed linear model, 108
dynamie, unstable, 127
indeterminate, 115
interest at, 126
in Leontief models, 172
long-run competitive, 166, 171, 172
in phase-pericdic systems, 119, 121
static, 125
unstable, 125, 173
Equilibrium process, 171
contained in the technological informa-
tion, 114
existence of, 114
rate of growth of, maximal, 114
Equilibrium theory,
competitive, 187
general, 98
FErrors, 282
of observation, 283
Huclidean spaces,
finite dimensional, 208
n~-dimensional, 288, 298
Exchange activities, 91, 93
Expansion,
of activities, profitable limits to, 187
maximum rate of, 2
uniform, scalar coefficient of, 2
gee also Growth rate
Expansion capability function, 209
Expansion curve, geometrie, for produe-
tion, 216, 217
Expenditures,
autonomous, 139, 140
government, 140
Exports, increase of, in relation to in-
crease in imports, 141

Facets of a convex polyhedral cone,
70-72, 312-316
closed, 63, 64
efficient, 63, 64, 232, 233, 237
of efficient point set, 182, 231, 232
incidence of, 77
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Facetsof a convex pohyhedral cone (conl.),
normal to, 235
open, 63-65
relative interiors of, 233
Factors, 261
availability of,
changes in, 271
ratio of, 266
changes in the supply of, 267
continuous substitution between, 33
free, 3, 80, 266, 272
limitational, 33, 165, 166 .
primary, 34, 35, 39, 40, 89, 261, 263,
265, 267
availabilities of, 1
availability restrictions on, 53, 60, 79
changes in relative scarcity of, 266
as desired commodities, 59
free, 80, 263
labor as, 39, 48, 142, 147, 156, 166
limitational, 165, 166
limitations on, 34, 36
minimization of a function of, 261
a mode} without availability restrie-
tions on, 59
partitioning of, 81
scarce, 263, 264, 266, 267, 272, 277
substitution of, 8
see also Commodities
Feasible point, 145, 160
representation of, 157, 1569
Feasible point set, 157, 159, 164
see also Posgible point set and Attain-
able point set
Feasible program, 25
Feasible solution, 340, 342, 346, 353
construction of, 345
maximum, 340, 344
construction of, 341
uniqueness of, 345
nenexistence of, 345
optimum, 332
of transportation problem, 361
Feed-back effects, 137
exclusion of, in open Leontief models,
137
Firm, production decisions in, 95
Flow coefficients, 206, 211
Flow functions, characteristic, of an ac-
tivity, 19
Flow model, static, 8

" SUBJECT INDEX

Flows, 211
of eommodities, 100
empty ship movements, eircular trans-
formation of, 248, 252, 253
inner circuits of, 100
of inputs, 118
money, measurement of input-output
coefficients by, 3
of cutputs, 118
and stocks, in program planning, 210
of transported goods, substitution be.
tween, 222
Foreign trade, 132, 135, 140
Frame of cone, 11, 43, 300, 303, 304, 307,
308, 310, 311
Frame of matrix, 43
Free commodities, 37, 104, 115
Free factors, 266, 272
primary, 80, 263

Game,
discrete zero-sum, 374
iterative method for solution of, 374
accuracy of approximation in, 375
caleulations in, 375
number of operations in, 375
matrix, 376
skew-symmetric, 332
solution of, by fictitious play, 374
symmetric, 327
theory of, 10, 11, 317, 348
conneetion of, with theory of pro-
duction, 10
two-person constant-sum, 348
two-person zero-sum, 317, 326, 327, 330
main theorem of, 295
optimal strategies for, 287
value of, 356, 374
see also Strategies
Game problem, 333
application of simplex method to, 348
reduction of, to a programming prob-
lem, 12, 330, 349
Gauss-Seidel method for solution of si-
multaneous linear systems, 16 fn.

* Government expenditures, 140

separation of autonomous and induced
parts of, 140
Graph,
circuits in, 247, 248, 253
cyclomatic number of, 252
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Graph (cont ),
cfficient, of empty ship movements,
244 256
linear, 9, 244, 258, 373
Growth curve, nonlinear, representation
of, in a linear model, 9, 216
Growth rate, 217
constant, 125
equilibrium, 114
general, 219
limitations on, 16, 216
limiting, as a separate side condition
in the model, 216
of processes, 110, 112, 113
as a result of shortages, 216
statistically determined, 207
Guided penetration method, 379

Halfline, 289, 299
extreme, 300-302, 304, 305
Halfspace, 289, 301, 308, 309
extreme, 291
supporting, 200
Harvard Economic Research Project, 98,
116 in., 117, 165 fn.
Helmsman, 93, 95
Hessian determinant, 144 fn.
High cost production, 217
Horizon, technological, see Technological
horizon
Household,
technological information of, 173
treatment of, in Leontief models, 132,
134
Hull, convex, 10, 43, 88 fn., 149, 150,
157, 164, 300, 304
Hyperplane, supporting, 290

Imports, relation of increase of, to in-
crease in exports, 141
Incidence relations among facets, 77
Income, :
changes in, as a result of technological
changes, 267
comparisons of, with the introduction
of new commedities, 279
Income-consumption ratio, 130
Ineome effect, 280
Income inex, 262
Indivistbilities, 21
in production, 21, 36, 96
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Induced changes in inputs, 139 fn.
Induced inputs, 140
Industrial management, 4
Industrial planning, 207
Industries,
as activities, 3
integration of, 101
useful, 164
Inequalities,
between vectors, 45
linear, see Linear inequalities
system of, variables of linear funetions
constrained by, 317
Innovations, technological, 9
Input coefficients, 118, 133, 136, 140, 195,
219
Input isoquants, 107
coneavity of, 107
Input-output analysis, 98
Input-output coefficients, measurement
of, by money flows, 8
Input-output fables, 98, 182, 203, 283
Inputs, 211
autonomous and induced, distinetion
between, 140
cost of, 103
flows of, 118
investment, 141
net, 35
proportionality of, to outputs, 6
Institutional assumptions, speecification
of, 6
Integration, 102
of industries, 101
of processes, 101, 107
Interest, rate of, 103, 109, 127
equilibrium, 126
conditions for, positive or negative,
126
zero, 125
Interindustry relationships, 3, 18
Inventories, see Stocks
Inventory, normalized, 215
Irreversibility postulate, 48
Irreversibility of production, 48
Tso-curves, 107
Isodromes, 123, 125, 127, 129 fn., 130
Isoquant, 107, 108, 265, 272
Iteration, 374, 377, 379
in program planning, 205
in simplex method, 343
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Tterative methods,
of computation, 12
of cost minimization, 370
for maximization of linear function,
~ 377
for sclution of game, 374, 375

Kirchhoff’s law, 258

Labor,
costs of, in aircraft production, 217,
218, 220
in Leontief models, 142, 147, 155, 166
as numéraire, 172
as primary f{actor, 39, 48, 142, 147, 156
Lagrange mulfipliers, 144
Lebesgue-Stieltjes integral, 23
Leg-of-voyage activities, 227, 228
Leg-of-voyage coordinates, 229, 233
Leontief models, 119 fn., 145, 147
abgsence of joint production in, 3, 147,
156, 166
alternative methods of production in,
8
assumptions for, 155
closed, 132, 167
equilibrium in, 172, 173
econstant returns to seale in, 143
definition of input coefficients in, 133
dynamic, 24, 26, 27, 124, 128
generalization of, 4, 8
equation systems of, 134
generalization of, 15, 165
generalized, 165
assumptions for, 165
open, optimum allocation under
long-run competitive equilibrium
in, 166, 171, 172
theorems for, 170
impossibility of price change or substi-
tution in, 143, 145
labor in, 142, 147, 155, 156, 166
limitational, 165, 166, 168
open, 132, 133, 138, 139, 167
conditions for the production of a
complete bill of goods in, 139, 170
effects of investment in, 136
employment coefficients (total and
direct) in, 135, 139
empioyment effect in, 139
equation system of, 134

SUBJECT INDEX

Leontief models, open (cont.),

exclusion of feed-back effect in, 137
foreign trade in, 132
general theorems for, 167
government in, 132
houscholds in, 132, 134
importance of industry classification
in, 139
investment in, 132
labor coefficient of, total, 135
limitations of, 136
as model of autonomous expendi-
tures, 139
rank of, 170
relations between output and foreign
trade in, 135
rank of, 170-173
substitution in, 4, 145
substitution theorem for, 142, 143,
147, 148, 155, 171
conditions for validity of, 153
generalization of, 155
proof of, 161
under strong assumptions, 158
under weak assumptions, 164
technological horizon of, 167
use of input-output tables in, 98, 132
Limitational factors, 33, 1656
Limitations,
capacity, in transportation model, 225,
226
commodity, 16-18, 189
on factors, 8, 34, 36
on resources, 34, 36, 42
Lineality of a cone, 45, 200, 294
Lineality space,
of a cone, 45, 310, 311
of a set, 301
Linear combinations,
of basic activities, 37, 156
convex, 299, 300, 303
positive, 208, 305
strietly convex, 2909
strictly pesitive, 209, 304
Linear equality, replacement of linear in-
equalities by, 339
Linear functions, maximization of, 8, 11
on & compact convex set, 88
on convex polyhedral sets, 12
of nonnegative variables, 10
objective, 26, 28
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Linear functions (cont.),
subject to linear inequalities, 5, 287,
317, 331, 339, 377
guided penetration method for, 379
iterative methods for, 377
to obtain efficient points, 80, 85, 86
plane intersection method for, 378
guccessive penetrating method for,
to obtain an initial point, 379
traversal method for, 377
Linear functions, minimization of, 31
Linear graph, 9, 244, 268, 373
Linear homogeneous equation, 133
Linear inequalities, 11, 26, 287, 333
homogeneous, 318
maximization of a linear function sub-
ject to, 5, 287, 317, 331, 339, 377
and polyhedral cones, 287
replacement of, by linear equality, 339
Linear models, 6
of aireraft production, 217
applications of, 31
capital equipment in, 15, 195, 211
closed, eguilibrium in, 108
dynamie, 116, 129
of production, see Production model
representation of nonlinear growth
curve in, 9, 216
time lags in, 15
use of in production policy, 9
Linear objective function, 26, 28
Linear processes, see Processes, linear
Lipear programming, b, 12, 145, 155, 282,
283, 284, 287, 207, 317, 319, 331,
332 '
applications of, 31
errors in data of, 282
matrix problems in, 317
ponexistence of local maxima for, 30
Linear Programming Conference, 5,
282 {n,
Linear programming problem, equiva-
lence of, to game problem, 12, 349
Linear space, 290
Location,
potential function of, 237
and ships, see Ships
and transportation, 37
Locational potential, 259
see also Potential funetion
Low cost production, 218
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Management, industrial, 4
Management capacity, 217, 218
Manpower, see Labor
Marginal cost, of variations in trans-
portation program, 234, 253
Marginal cost, prices at, 96
Marginal productivity, 107
Marginal rates of substitution, 8, 66, 107,
108, 144, 180, 182, 183, 229, 234,
238, 253
ronincreasing, 67
Marginal rates of transformation, 180,
183
Market,
allocation model independent of, 7, 8,
42
competitive, 2, 8, 85, 109, 143, 177, 257
prices in, 8 .
model of transportation with, 256
Market mechanism, § '
Matrices, inequalities between, 318, 319
Madtrix,
frame of, 43
game, 376
myersion of, 57
maximal, 11, 319, 321, 328
minimal, 319, 321, 328
payoff, 326, 327, 330, 349, 350
technology, see Technology matrix
Matrix problems in linear programming,
317
Matrix representation of cone, 43
Maxima, local, nonexistence of, for linear
programs, 30
Maximization,
of linear functions, se¢ Linear functions
of objective function, 15
of return to dollar, 109
Maximizing principle, 26
Military planning, 4, 18, 189
Minimization,
of cost, 217, 240, 370
of a function of primary factors, 262
Model,
aireraft production, 217
allacation, 7, 8, 42
of autonomous expenditures, 139
of Berlin airlift, simplified, 195, 204,
205
closed, capital formation in, 2
continuouys, for program planning, 211
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Model (cont.), _ .
denumerable with time shifts, 22
dynamic, for program planning, 189,

211
finite, with time shifts, 22
Leontief, see Leontief models
linear, see Linear models
military programming, 4
von Neumann, 24, 28
open, 7, 8, 133
production, introduction of prices in,
267
of programming, for U. 8, Air Force, 24
rectangular, 200
special continucus, time shifts, 22
special finite, 15 fn.
static,
of production, 1
of transportation, 9, 31
triangular, 189, 202, 203, 205-207
of transportation, see Transportation
without availability restrictions, 59

Multiplier, 139
aggregate, 141
pseudo-, 139
specifie, 141

National Bureau of Standards, 202

Negative polar cones, 44

Negative polar of set, 299

Negative prices, 91

von Neumann model, 24, 28

von Neumann’s theorem, alternative
proof of, 8

Nonnegative variables, linear functions
of, 10

Null activity, 21

Objective funetion, 2, 8
linear, 26, 28
maximization of, 15
Objectives,
of allocation, 38
allocative, of production, 59
formulation of, 17
of production, 34
of program planning, 190, 201
Observation,
economic, accuracy of, 282
errors of, 283
Office of Naval Research, 282, 317 fn.
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Opportunity cost, 234
Opportunity cost curves, 107
Optimizing conditions, 261, 262
Organization,

centralized, alloeation in, 7, 15

econormie, problems of, 95

industrial, degenerate, 161, 163
Orthogonal complement,

of cone, 44

of set, 200
Output coefficients, 195, 219
Output isoquants, 107, 108
Output variables, stocks as, 7
Outputs,

final, 35, 142, 143

variation in, 143
flows of, 118
and foreign trade, relations between,
in Leontief models, 135

negative net, 540

net, 35, 37

proportionslity of, to inputs, 6

value of, 103

zero, of intermedinte commodities, 55
Overdetermination of triangular models,

206

Payoff, 375
Payoff matrix, 326, 327, 330, 349, 360
Periodicity, 116, 117
Phage-periodicity, 119, 121, 128
Plane intersection method, 378
Planned economy, efficient allocation in,
95
Planning,
industrial, 207
military, 189
program, see Program planning
Planning factors, 193
Player,
maximizing, 355, 356
minimizing, 355
Paoint-periodicity, 119
Point set see Attainable point set, Effi-
cient point set, Feasible point set,
and Possible point set
Point set, theory, importance of, to
economics, 10
Polyhedral,
definition of, 289
see also Cones
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Possible activities, technology as a set of, * Processes,

20
Possible cone,
local, 61, 62, 64
nonsolid, 51
pointedness of, 49
redueed, normal to, 90
Possible point, 224, 229
see also Feasible point
Possible point set, 47, 157, 179, 182
183, 226, 229, 232, 261
in commodity space, 47
definition of, 47
as an intersection of halfspaces, 233
relation of attainable point set to, 79
see also Feasible point set,
Potential function, economie, 103 fn.,
257, 259, 373
of the loeation of a ship, 237, 254
Price concept, in allocation model, 8,
42
Price space, 185, 187
division of, into sectors on the basis of
the profitability of crop rotations,
185
Price vector, 91, 320
under availability restrictions, 83, 89,
91
external, 91
as a positive normal to an efficient
facet, 66
unique, marginal rates of substitution
defined by, 66
uniqueness of, 66
Prices, 65, 66, 144
aceounting, 65, 267
in a competitive market, 8
constellation of, 104, 108, 109, 112, 113
equilibrium, 115
efficiency, se¢ Efficiency prices
external, 9 fn.
of intermediate commodities, 89, 91
internal, 9 fn.
introduction of, in production modef,
267
negative, 91
relative, 180
Primary commodities, see Commodities
and Factors
Primary factors, see Factors and Com-
modities

achievable, 101
choice of, by maximizing return to the
dollar, 109
completely integrated, 167, 170, 172,
173
most efficient, 167
economical, 266
see also Activities, economieal
efficient, 106
elementary, 28, 28, 36, 155, 156, 166,
170, 171, 173
integration of, 166
eligible, 266
equilibrium, 114, 171
integration of, 101, 102, 170
linear, 99, 104, 109
base of, 100
comparison of, 103
criterion for choice between, 103
definition of, 99
missing, 108
nonlinear, integration of, 107
profitability of, 104
rate of growth of, 110, 112, 113
Production, 216
aireraft, 216-218
alloeative objective of, 38, 59
alternative methods of, in Leontief
models, 8
coefficients of, 143, 193, 278
changes in, 278
constancy of, 98
of complete bill of goods, conditions
for, 168-170
cumulative, 220
efficient, 6
expansion ecurve for, geometric, 216,
217
fixed coefficients of, 142
high-cost, 217
high-cost fraction of, 221
indivisibilities in, 21, 36, 96
irreversibility of, 48
joint, 3, 34, 156, 166
exclusion of, in Leontief models, 3,
147, 156, 166
labor costs of, 217, 218, 220
s a linear combination of basie activi-
ties, 36, 156
low-cost, 218
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Production (cont.),
method of, represented by an activity,
261
model of, see Production model
objective of, 34
possibility of, with intermediate com-
maodities, 55
possibility of, without intermediate
commodities, 52
rate of increase of, 220
scale of, 100, 103
static model of, 1
technical possibilities of, 34
theory of, connection of, with theory
of games, 10
with zero output of intermediate com-
modities, 55
Production curves, cumulative, 208
Produstion decisions in the firm, 95
fitted to program requirements, 208
Production expansion capability funec-
tion, 209
Production experience, 218
Production function, 6, 8, 33, 34, 96, 260
agpgregate linear, 98, 106, 107
continuity of derivatives of, 6
application of, 107
expressed as continuous function,
107
with continuous derivatives, 6
differentiable, 9, 147
homogenecus, 148
of degree one, 6, 143
inclusive, 34
kinks in, 34
linear, aggregate, 98, 106, 107
nondifferentiable, 155
polyhedral, 6
technological change as shift in, 260
see also Transformation function
Production model, linear, 11, 177, 178,
217
conditions for an optimal solution of
the reduced system of, 264
introduction of prices in, 267 _
reduced systems of, 263, 264, 267, 268
with one final product, 263
Production policy, use of linear models
in, 9
Produetion scheduling, efficiency in, 4
Production surface, 265
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Productivity, marginal, 107
Productivity ratio, 105, 114, 115
Products, '
joint, 166
see Commodities
Profit, 187 !
accounting, of an activity, 65
in allocation model, 42
rate of, 103
zero, 2, 109
Profitability,
of an activity, 93, i85
of erop rotation, 177, 178
negative, 94
positive, 94
of a process, 104
zero, 94, 235
Program,
computation of, 190, 202
eonsistency of, 190
dynhamie, 15
feasible, 25
initial status of, 16, 17
possible, 24, 25
a8 an efficient point, 28
optimum, 26
gelection of, 25
unique, 26
Program planning, 194
aggregation of items in, 215
arithmetic elements in, 193
capital equipment in, 195, 211
commodity limitations in, 16-18
communication between staff agencies
in, 192
computational equipment for, 202
continuous models for, 211
eriteria for, 189
decision-making in, 193
definition of, 15
dynamic models for, 189, 211
flow coefficients in, 210, 211
military, 18, 189
normalized inventories in, 215
objeetives of, 190, 201
obstacles to consistency in, 192
optimal, over all time perieds, 201
overdetermination of triangular models
in, 206
rectanguiar models in, 200
resource limitations in, 17
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Program planning (cont.),
solving of simultanecus equations in,
by iteration, 205
stages in, 190
stocks and flows in, 210
storage activities in, 208
trianguliar models for, 202-206, 216
advantages of, 206
elements of optimization in, 207
underdetermination of, as a result
of relaxing restrictions, 207
Program requirements curve, cumula-
tive, 208, 209
Programming,
comparative, 194
linear, see Linear programming
military, model of, 4
schedule for, 190
in U. 8. Air Foree, model for, 24
Programming models, military, 4
Programming problems, 4
in a large organization, 9
linear, equivalence of, to game prob-
lem, 12, 349
reduction of game problems to, 330
systematic study of, 5

RAND Corporation, 216 fn.
Ray, see¢ Halfine
Regimes, discontinuity of, 117, 118
Relative boundary, 45
of convex nonpolyhedral cone, 302
of convex polyhedral eone, 45, 309, 312
of set, 301
Relative interior,
of cone of normals, 71
of convex nonpolyhedral cone, 302
of convex polyhedral cone, 11, 45, 71,
236 fn., 303, 309, 311, 316
of facet, 233
of set, 301
Relaxation phenomena, 116, 117, 119,
120, 122
Rent, 187
Representation,
of commodity vector, 157, 159, 160
of efficient point, 160
of feasible point, 157, 159
matrix, of cone, 43
nonirivial, 164
trivial, 161-163
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Resource requirements, 203

Resources, limitations on, 34, 36, 42

Return to dollar, 103, 164, 110, 115
attainment of greatest Jower bound of,

110 :

attainment of least upper bound of, 111
continuity of, 110
maximization of, 109

Returns, decreasing, 6, 107

Returns to scale,
constant, 6, 36, 143, 156
varying, 96

Round-voyage activities, 227

Baturation, 38
Scalar weights, 149
Scale,
constant returns to, in Leontief models,
143
economies or diseconomies of, 36
of production, 100, 103
returns to, 6, 36, 96, 143, 156
Set,
convex, 10, 300
closed, 9, 158, 164
extreme point of, 300
eonvex hull of, 300, 304
dimensionality space of, 301
dimensions of, 301
finite, convex hull of, 300
interior of, 209
lineality space of, 301
mapping of, onto a subspace, 303
negative polar of, 209
orthogonal complement of, 299
polyhedral, 10
pasitive polar of, 209
relative boundary of, 301
relative interior of, 301
subspace spanned by, 301
Bet theory, importance of, to econom-
ios, 10
Shadow prices, 65
Ship movements, empty, 256
circuits in the graph of, 247, 248
neutral, 253
circular transformation of the flows of,
248, 252, 253
disconnected graph of, 248, 250
efficient graph of, 244, 248, 256
computation of, 251
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Ship movements, empty, efficient graph
of {cont.),
determined by potential function,
248
maximal, 253
minimization of the cost of, 240
optimal routing plan for, 241
Ships,
economic potential function of the lo-
cation of, 236, 237, 253, 254
efficiency price of the loeation of, 236,
237, 253, 254
loeational potential of, 236, 237, 253, 254
Simplex method, 12, 340, 348, 351, 355,
362, 377
application of, to degenerate cases, 365
application of, to game problems, 348
application of, to transportation prob-
lem, 359
computationsl rules for, 367
change of basis in, 353
formula for, 358
computations in, 343
iteration in, 343
Simultaneous equations, system of,
in program planning, 205
representing economic interrelation-
ships, 17
Smoke pollution, 38 {n., 39
Social cost, minimum of, 109
Socialist society, 3
Solid cone, 45, 301
Space, linear, 200
Splieing conditions, under a discontinuity
of regime, 118
Stability,
eonditions for, under decentralized de-~
cision-making, 94
dynamie; 127
Static equilibrium, 125, 173
Static model,
of production, 1 ‘
of transportation, 9, 31, 222
Stationary economy, 115
Statistical data,
aceuracy of, 282
inaceuracy of, 10
Statistical theory, 283, 284
Step functions, 29
Stocks, 118, 210, 211
activities related to, 200
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Stocks (cont.),
of commodities, 100
and flows in program planning, 210
as output variabies, 7
proper, 124
Storage activities in program planning,
208
Strategies,
dummy, 350, 356 .
excluded from final basis, 357
- mixed, 330, 349, 375
mixed optimal, 326, 327, 330, 333, 354,
356
of the minimizing player, 357
optimal, 349
pure, 356
real, included in final basis, 357
Strueture,
of activities, 193
static, of demand, 2
statistically determined, 193
technological, see Technology matrix
Substitutability,
and fixed coefficients of production, 143
perfect, in consumption, 264
Substitution, 142
continuous, between factors, 33
of factors, 8
and Leontief models, compatibiiity of,
4, 143, 145
marginal rates of, 8, 107, 144, 180, 182,
183, 234, 238, 253
between flows of transported goods,
222
between groups of commodities, 68
decreasing, 108
defined on an efficient facet, 234
defined by a unique price vector, 66
efficiency prices, intetpreted as, 238
increasing, 107, 108
nonincreasing, 67
opportunity costs as, 234
Substitution curve, 182
Substitution theorem, see Leontief models
Buccessive penetration method, 379
Supporting halfspace for cone, 290
Bupporting hyperplane for cone, 200
Supporting plane, definition of, 167 fn,

Tactical plan, basic, 180
Technionl eoefficients, changes in, 266
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Technical ratios, fixed, 33
Technical superiority, definition of, 104
Techniques, 277
Technological change, 260, 262, 263, 267,
268, 272, 277-280
activities promoting, 281
cost-saving effect, 281
derived, 272
in economic theory, 260
income effect of, 267, 272, 280
empirical estimation of, 269, 277
introducing new commodities, 279, 281
meaning of, 260, 262
as a produet of column transformations
of the reduced technology matrix,
273
and public activity, 281
relative magnitude of, 269
resource-saving effect of, 269
resource-widening, 281
as & shift in production function, 260
substitution effect of, 269
terminology of, 277
“trigger effects” of, 268, 271-273, 277
Technological coefficients,
changes in, 271
fixed, 2
Technological horizon, 98, 101, 102, 108,
114, 167, 169
closed, 172, 173
as a closed cone, 171, 172
of Leontief models, 167
linear, 114
as a 2n-dimensional cone, 114
Technological information, 102, 108, 167
equilibrium process contained in, 114
of the household, 173
linear, 108
Technological innovations, 9
Technological knowledge, 102
Technological leaders, 279, 280
Technological possibilities, 279281
changes in, 279, 280
efficient utilization of, 35
Technological structure, see Technology
matrix
Technology, 37, 236, 260, 277, 278
average, 279
and choice, 33
distinguished from techniques, 277
enjarged by exchange activities, 92
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Technology (coni.),
fundamental postulates of, 47
linear, 19, 21
continuous, 21, 23, 25, 26
denumerable, 21
finite, 21, 25, 26, 28
reduced, 59, 236
as the set of possible activities, 20
unchanging, 2
Technology matrix, 87, 47, 56, 69, 76, 91,
193, 227, 236, 255, 257, 320
admissible, 157
completely reduced, 229
extension of, by changes of technologi-
cal possibilities, 279
for n-port model of transportation, 239
partially reduced, 224226
partitioning of, 52, 261
reduced, 57, 59, 80, 89
column transformation of, 273
triangular, ¢
Time lags in linear models, 15
Topological properties of efficient point
set, 73, 96
Topology, 268
Transfer of products, 132
Transformation,
circular, of flows of empty ship move-
ments, 248, 252, 253
economic, 99
Transformation function, 35, 233
efficient point set as, 233
see also Produetion function
Transformation, marginal rates of, 180,
183
Transformation surface, 183
Transportation, 322, 350
loeation and, 37
static models of, 9, 31
see also Trapsportation model, Trans-
portation problem, and Trans-
portation program
Transportation equipment, efficient uti-
lization of, 222
Transportation model, 222
activities in, 224
analogies of, with theory of electrical
networks, 258
capacity limitations in, 225, 226
commodities in, 225
with a competitive market, 256
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Transportation model (cont.),
dynamic, use of leg-of-voyage coordi-
nates in, 229
efficient points for, 240
definition of, 230
illustrated by cargo movements in
1913, 243
leg-of-voyage and round-voyage activi-
ties in, 227, 228
n-port, 238
technology matrix for, 239
possible points and efficient points in,
229
static models of, 9, 31, 222
two-port, 222
analysis of, in leg-of-voyage coordi-
nates, 233
analysis of, in round-voyage coordi-
nates, 227
completely reduced technology ma-
trix for, 228, 229
partially reduced technology matrix
for, 224-226, 228, 229
technology matrix for, 223
Transportation problem,
application of simplex method to, 359,
367
computation of, 12
ieasible solution of, 361
Transportation prograr,
efficient point corresponding to, as
route plan for empty ships, 240
marginal cost of variations in, 234,
253
in m-port transportation model, 238
Traversal method, 377

BUBJECT INDEX

Triangular model,

overdetermination of, 206

for program planning, 202-206, 216

underdetermination of, 207
Triangular program computation, 202
“Trigger effects,” 268, 271-273, 277

Underdetermination of triangular mod-

els, 207
U. 8. Air Foree, 24, 190, 202, 205, 206,
210, 211
model for internal operations of, 18,
194

models for programming in, 24
Planning Research Division, 189
Trysohn’s theorem, 107 fn.

Vanderbilt University, 98, 116 fn,, 165 fn,
Variables,
exogenous, 133
nonnegative, 10
output, stocks as, 7
Vector, maximization of, 11
Vectors, inequalities between, 45, 288,
317

Walrasian system, Cassel’s formulation
of, 1

Warehouse problem, 32

Waste producis, regarded as intermediate
commeodities, 40, 91

Weight vector, 157, 162

Welfare economics, 2, 95

Welfare function, 2

Welare principle, weak, 2

Weyl’s Theorem, 291203, 305



