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Abstract

The ability to make accurate predictions relating to consumer preferences is a key fac-

tor of a digital firm’s success. Examples include targeted advertisements and, more broadly,

business models relying on capturing consumers’ attention. The prediction technologies used

to learn consumer preferences rely on consumer generated data. Despite the importance of

data-driven technologies, there is a lack of knowledge about the precise role that data-scale

plays for prediction accuracy. From a policy perspective, a better understanding about the

role of data is needed to assess the risks that “big data” might pose for competition. This

article highlights potential complementarities in algorithmic learning, which suggest data-scale

advantages might be substantial. We analyze our hypothesis using search engine data from

Yahoo! and provide evidence consistent with locally increasing returns to scale.
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1 Introduction

The theoretical economic literature has studied the externalities inherent in the collection of

user data and their potentially adverse effects on market outcomes (Acemoglu et al., 2019;

Bergemann et al., 2021). These externalities rely on combining two data dimensions: Data

collected “within users” and data collected “across users” (Hagiu and Wright, 2020; Lee

and Wright, 2021). This article provides one of the first empirical analyses that studies the

combined effect of both data dimensions for the competitiveness of firms using data from an

industrial-scale application of algorithmic learning technology.

Our analysis provides new insights relevant for the question whether exclusive control

of consumer data can grant significant competitive advantages (Sokol and Comerford, 2015;

Tucker, 2019).1 The answer depends upon the extent to which returns to data are dimin-

ishing. If returns diminish fast, then small competitors and new entrants can easily reach

the efficient scale. If, on the other hand, returns diminish slowly, or do not diminish at

all, then data control can represent a substantial barrier to entry, and regulators may have

more grounds for concern. Studying the role of data complementarities helps contributing

to understand how data unfold value at scale.

We analyze a unique one-month sample of search traffic data from Yahoo!. We observe

users entering keywords in the search bar of the search engine and their subsequent inter-

action with the search results. The search engine collects the logs of users’ clicks on the

search result page. The collected data allow the search engine to learn from experiments

with different search results across searches and to build richer user profiles based on the

observed interaction between the user and the results.

From our data, we can construct two variables that capture the across-user and within-

user dimension of data accumulation: The first variable, which captures the across-user

dimension, counts the number of times a keyword is searched (typically, the majority of

1Recent antitrust proceedings have focused on the potential anti-competitive effects of data, see, for
example, European Commission (2018), recitals 111, 114, 458, 514, 739, 860(3), 1318, 1348.
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searches stems from different users). The second variable counts the average number of

times users have been observed prior to entering a keyword. We call this second variable

the average user history. A longer user history indicates that the search engine observed a

user more often and, hence, could collect more user-specific data. If a keyword is searched

by users with longer histories, this leads to a longer average user history for the keyword,

which indicates that the search engine could on average rely on more user-specific data.

Our empirical analysis documents a positive relationship between search quality (defined

as the likelihood that a user selects the top displayed search result returned from entering

a keyword) and the number of searches a keyword experiences. Additionally, we find that

the increase in search quality from additional searches is more pronounced as the average

user history increases. This suggests that more user-specific information makes learning in

the across-user dimension more efficient, i.e. the search engine learns faster from additional

searches on a keyword when more user-specific data is available about the users searching

the keyword.

Our findings are consistent with the notion that adding additional observable charac-

teristics to a prediction model should generally improve its prediction performance. In the

well-known ordinary least squares (OLS) setting, our results could be thought of as capturing

the property that using a larger set of explanatory variables will generally lead to a larger

R-squared. Within this analogy, the search engine algorithm corresponds to the OLS model,

the number of searches corresponds to the number of observations (the N -dimension), and

a longer average user history corresponds to the number of explanatory variables (the K-

dimension) used to estimate the OLS model. In this setting, our results translate to the

statement that an OLS model with more variables (larger K-dimension) will have a better

fit once the parameters have been consistently estimated (exploiting the N -dimension).

While the OLS-analogy might be helpful to illustrate our findings, it should be noted that

search engine algorithms face more complex data environments. For instance, the number

of observable characteristics is likely to vary across different users. Additionally, the amount
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of data collected about each user is constantly increasing as users interact with the search

engine. Both facts constitute peculiar challenges which render our findings non-trivial.

The outlined mechanism relies on the assumption that user-specific data is used by the

search algorithm: If user-specific data does not constitute an input into the algorithm,

technological complementarities between user-specific data and across-user learning are not

possible. We rely on this insight to design a test to assess whether the observed pattern of

faster across-user learning from more user-specific information is likely to capture a genuine

complementarity effect (instead of spurious correlation).

To do so, we classify keywords in two groups: “Personalizable” keywords, i.e. keywords for

which we find indication that the search engine relies on user-specific information, and “non-

personalizable” keywords for which we find no such indication. Our classification method,

which we describe in more detail later, relies on the insight that search results should change

more frequently for personalizable keywords and that, additionally, these changes should

depend on the information contained in the user-specific data.

We find no evidence for faster across-user learning for non-personalizable keywords. In-

stead, this pattern is only observed for the group of personalizable keywords. The fact that

faster across-user learning is only observed for the group of personalizable keywords is com-

pelling evidence that our findings are caused by genuine technological complementarities.

Finally, we also explore the intensive margin relationship between the average user history

and the speed of across-user learning using generalized random forests (Athey et al., 2019).

Our results are indicative of a S-shaped relationship between the average user history and

across-user learning efficiency gains. This is consistent with locally increasing returns to scale

when the average user history is short. To the best of our knowledge, we are the first study

providing empirical evidence for increasing returns to scale in a specific data dimension.

One caveat of our empirical analysis is that the nature of our data hinders an exact

identification of effect sizes. It is inherently difficult to relate the search quantities we observe

in our sample to the real search traffic. We note that precise effect sizes are likely to vary
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across firms and to depend on the quality of the employed algorithm. Our main contribution

is to highlight a mechanism, which is based on plausible interaction effects between different

aggregation levels of consumer data.

The interaction between the user-specific dimension (K) and the across-user dimension

(N) of data has implications for competition policy as well as newly shaping digital reg-

ulation.2 First, with respect to data sharing, our results suggest that personalized data

might be particularly valuable because they increase the efficiency from learning across dif-

ferent users. Our results also call for awareness from antitrust policy regarding firms seeking

to deepen knowledge about their existing customer base. For instance, merging databases

across different services with large overlap in the user base might grant firms significant data

advantages.

Second, our findings indicate that sharing search, query and keyword data may not be

sufficient to restore a level playing field among competing search engines, if those data cannot

be connected to individual users. Our results show that overly cautious anonymization

standards may have serious implications on market outcomes: De-personalization of data

that does not allow to link searches to user profiles might render data sharing significantly

less effective for fostering competition.3

We emphasize that our results are likely to generalize to applications other than search

engines. The idea of using data generated through the interaction between the service and

the consumer is at the core of modern recommendation systems, which power the content of

social media feeds, streaming services, and the product recommendations of online retailers.

Each time a user interacts with one of the recommendations generated by these systems, she

2Regulators around the world are considering the mandated sharing of click and query data to level the
playing field between competing search engines, see, for example, ACCC (2021), p. 22; European Commission
(2020), Article 6(1)j; and CMA (2020), p. 365 for Australia, Europe, and the UK, respectively. In the US,
following an investigation, lawmakers have proposed several bills to curb the market power of Amazon, Face-
book, Google, and Apple: The ACCESS (last accessed: February 15, 2022) bill aims at enabling consumers
to take control over their personal data.

3Striking the right balance between privacy and data-sharing may impose significant challenges, and
the anonymization of data is far from trivial as testified by the recent publication of the European Data
Protection Supervisor highlighting common misunderstandings related to data anonymization, see EDPS
(2021a).
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contributes to across-user learning and reveals information about herself. Thus, our findings

are likely to apply to a broader class of use-cases of algorithmic learning technology.

The remainder of the article proceeds as follows: Section 2 briefly locates our article

within the related economic literature. Section 3 provides background information on web

search and on how user data can be used for learning. Section 4 introduces the data and

explains our empirical strategy. Section 5 presents the main results. Section 6 concludes.

2 Related Literature

On the theory side, Argenton and Prüfer (2012), Prüfer and Schottmüller (2017), Farboodi

et al. (2019), and De Corniere and Taylor (2020) study competition in data-driven markets

with across-user learning. Hagiu and Wright (2020) are the first to consider within-user

and across-user learning simultaneously. Close to our study is Lee and Wright (2021), who

theoretically model the value created by both data dimensions in recommender systems.

Our results can be thought of as providing evidence for data externalities (Acemoglu

et al., 2019; Bergemann et al., 2021) in a real world application of algorithmic learning

technology: Since data collected on a specific user also lead to learning about other users,

user-specific data have the potential to make learning across users more efficient.

Bajari et al. (2019) analyze the impact of data on the predictive performance of Amazon’s

retail forecast system. Claussen et al. (2019) and Yoganarasimhan (2020) document the

important role of personalized data for predictive performance. Our study adds to this

empirical literature by studying complementarities between different data dimensions.

Bajari et al. (2019), Claussen et al. (2019), Azevedo et al. (2020), and Yoganarasimhan

(2020) find evidence for decreasing returns from data. We find evidence for decreasing returns

in the across-user dimension and for locally increasing returns from more user-specific data.

Our article also speaks to the hypothesis outlined in Posner and Weyl (2019) who stress the

importance of considering the overall system performance when studying returns from data.
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Our findings indicate that user-specific data, through their effect on across-user learning

efficiency, are an important driver of system performance.4

3 Web Search and User Data

The data we use stem from Yahoo! (2010) and contain fully anonymized search logs spanning

a period of 32 days from July 1, 2010 until August 1, 2010, inclusive.5 An observation in

our database contains a keyword identifier, a cookie identifier (which identifies the device

on which the search was conducted), the precise time the keyword was entered in the search

bar, the ordered list of the top ten organic result URLs and the sequence of clicks performed

by the user. In total, we observe approximately 80 million searches performed by 29 million

distinct users (identified by the cookies) searching 67 thousand different keywords.

Figure 1 illustrates the structure of the typical search result page at Yahoo! around the

time the data were collected. The search keyword, highlighted in yellow next to the Yahoo!

logo, is the sequence of characters the user enters in the search bar in her quest for informa-

tion. We do not observe the original sequence of characters but only an identifier allowing

us to identify the same keyword over time. Organic search result URLs are highlighted in

yellow in the search result list. Paid advertisements are displayed on the north and east

edges of the result list.6

4Several contributions discuss the role of data for competition from a policy perspective. Lerner (2014),
Lambrecht and Tucker (2015), and Tucker (2019) argue that the era of digitization poses no special challenge
for antitrust authorities and that anti-competitive effects from data should be expected to be weak. By
contrast, Newman (2014) argues that data play an important role for firms in securing competitive advantages
over rivals. Grunes and Stucke (2015) call for a reorientation of antitrust policy to better account for the
role of data. Schepp and Wambach (2015) highlight the role of data in understanding dynamics in digital
marketplaces. Sokol and Comerford (2015) emphasize the lack of evidence regarding the role of data for the
success of firms

5The data that support the findings of this study are available for research purposes on request from
https://webscope.sandbox.yahoo.com/. The authors are not allowed to distribute the data directly.

6The general layout of the search result page has remained largely intact up to today, with search engines
typically devoting the top and east edges of the result page to ads.
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3.1 Learning from User Click Behavior

We now discuss how click data can be used to learn relevant search results. Using data

resulting from the interaction between the users and the web service to improve the prediction

accuracy of recommendations is the core principle of modern recommender systems.7 The

click data the search engine collects can be used to train the algorithm to learn relevant

search results.

Table 1 provides an illustrative example: The ones stand for positive search experiences

users had with a specific result for a specific keyword (i.e. the user clicked on the result),

the zeros stand for negative experiences (i.e. the user ignored the result). Table 1 illustrates

the stylized scenario in which the algorithm observes the implicit user feedback for all user-

keyword combinations, except one. The objective is to accurately predict the click behavior

for the missing user-keyword combination (user i = N and keyword j = K).

Note that in the stylized example of Table 1, the dimension K captures the amount

of user-specific data available about each user, while N captures the amount of searches

observed for each keyword. Table 1 serves to illustrate why both dimensions of data are

likely to be relevant for statistical learning. To build intuition, we can think of the algorithm

as training a prediction model for each keyword. For the sake of exposition, consider the case

in which the model used to train the algorithm for keyword K is a simple OLS regression:

Yi = β0 + βkXi + εi (1)

Where Yi denotes the preference realization of user i for keyword K in Table 1, and Xi

denotes the preference realization over the other keywords (1 to K − 1). As N increases,

more observations become available to estimate the regression parameters. A larger set of

observable characteristics, K, will lead to a larger R-squared of the OLS-regression. There-

fore, for the same N , the OLS-model with larger K will have a higher prediction accuracy.

7This method is known as collaborative filtering, we refer the reader to Adomavicius and Tuzhilin (2005)
and Lu et al. (2015) for a survey on recommender systems.
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As a result, the average prediction accuracy for user N will be weakly higher if the algorithm

can rely on more observable characteristics about users when training the model.8

Algorithms used by real-world recommendation engines are more sophisticated than sim-

ple OLS-models. Additionally, the typical prediction tasks are usually more complex and

the data environment less well-behaved (in reality, the algorithm will typically be confronted

with a different length of K across users). Nevertheless, the example serves to illustrate

why it is reasonable to investigate if more user-specific data might lead to more pronounced

across-user learning.

3.2 Narrative Evidence for Learning from User Click Behavior

If the search algorithm does not rely on user-specific information, like click data, the outlined

mechanism would not apply. As far back as 2005, Yahoo! engaged in research related to

recommendation systems (Decoste et al., 2005).9 A conference article published in 2011, and

coauthored by a senior Yahoo! researcher, states that “Today, we can also use the collective

wisdom of users, reflected in weblogs as clicked pages or in query logs as queries and clicked

results.” and “Contextualization and personalization are an essential ingredient of modern

search [...]” (Baeza-Yates et al., 2011, see p. 28 and p. 29).

The best evidence we could find for the use of user-specific information in the search

industry around the period our data were collected stems from a research article using

Bing search traffic data from September 2010. In the data description, the article states

8We omit a discussion of the difference between in-sample accuracy, as measured by the R-squared,
and out-of-sample accuracy, as measured by the prediction error. Technically, a large in-sample R-squared
does not automatically imply a better out-of-sample prediction accuracy. It might be that increasing the
number of observable characteristics reduces the prediction accuracy. The fact that a larger in-sample fit can
correspond to a worse out-of-sample prediction accuracy is known as the bias-variance trade-off. Methods,
such as cross-validation techniques, have been developed to account for the phenomenon. As a result, an
algorithm that can rely on more observable characteristics should not perform worse than an algorithm
that relies on less. Intuitively, if increasing the number of observable characteristics reduces the prediction
accuracy, the algorithm will simply learn to ignore the corresponding variables by applying cross-validation
techniques. As a result, the main intuition of our simplified exposition should remain intact.

9Some early personalization features were also publicly announced and introduced around 2005, see
https://www.cnet.com/news/yahoo-debuts-personalized-search/ (last accessed: February 15, 2022). While
these early personalization attempts were not a default setting of the search engine, they nevertheless demon-
strate an active agenda towards using user-specific information to recommend search results.
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that “To isolate the impact of long-term personalization, we did not use any other form

of personalization from the Bing search engine over the time period for which the data

were collected.” (Sontag et al., 2012, see p. 438 at the beginning of Section 5). While this

evidence does not pertain to Yahoo!, it corroborates the use of user-specific information in

the industry.

4 Empirical Strategy

In this Section we define our main variables. Additionally, we discuss important character-

istics of our data which help understand the choices we make in the empirical analysis.

4.1 Variable Description

Search Quality Measure

We observe a log that records the sequence and position of the clicks performed for each

search. The log ends if a user clicks on, i.e. visits, an URL and does not return to the search

result page within a specified amount of time. Figure 2 shows the distribution of the last

click position across searches. Position 0 identifies URLs above the first organic URL such

as ads, spelling suggestions and “also try” recommendations. Positions 1 to 10 identify the

organic URLs. Position 11 identifies clicks below the last organic URL (next result page).

The character “o” encodes other clicks (such as closing the browser), “s” encodes cases in

which the user entered a new keyword in the search bar, and “nc” identifies instances where

no click was performed.

We rely on the notion that a user not returning to the search result page after clicking

a URL means she was satisfied with the provided content. Our click based quality measure

assumes that the search experience is better if the URL visited last is displayed further up

on the result page. Based on this, we classify the quality of each search experience as good

(encoded as 1) or bad (encoded as 0). For each keyword, we aggregate the individual search
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experiences to an average quality score, which is known as the click-through-rate (ctr).10

Click-based quality measures, such as the click-through-rate, are widely used in the search

engine literature (Joachims, 2002; Jain and Varma, 2011). We use the following quality

measure:

ctr
{1}
j =

∑
s∈Sj

1[lcps = 1]∑
s∈Sj

1[lcps 6= 0]

Sj denotes the number of searches over which the click-through-rate for keyword j is

calculated. lcps denotes the last click position for search s. 1 denotes the indicator function.

The quality measure only counts a search as successful if the last click was performed on the

top displayed organic URL (position 1).

ctr
{1}
j ignores searches ending with a click on position 0 URLs because their meaning in

terms of quality is ambiguous. Besides ads, position 0 URLs also capture spelling suggestions

or “also try” recommendations. If a user clicks on an “also try” recommendation, we do not

systematically observe her subsequent click behavior, which could either indicate good or bad

quality. Discarding clicks on position 0 only leads to a drop in the number of observations

“within” a keyword. Most keywords also experience clicks on other URLs. As a consequence,

we only loose a marginal fraction of keywords from discarding position 0 clicks. In other

words, the sample of keywords considered remains essentially the same (also see the notes

in Table 2).

Explanatory Variables

For the empirical analysis, we define two variables that capture the two data dimensions

which are at the center of our analysis. The first data dimension captures the amount of

data accumulating across users. The second dimension captures the amount of user-specific

10Note that if a user first clicks on the top displayed URL and returns to the result page afterwards to
choose another URL further down the result list, this is not counted as a good search experience. We only
use the last performed click in a session.
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data. The data dimensions are defined relative to the keywords that we observe in our

sample, more precisely:

- Sj denotes the number of searches for keyword j.

- Hj denotes the average user history for keyword j. It captures the average number

of times users were observed before they entered the keyword j in the search bar of

the search engine. Denote by Hjt the length of the search history of a user searching

keyword j at time t during the period of our sample, T = [t, t], then Hj =
∑

t∈T Hjt

Sj
.

Figure 3 illustrates the computation of both variables. Sj, the number of searches,

captures the number of observations (the N -dimension) the algorithm could rely on to train

the statistical model for keyword j. Hj is the average number of times users have been

observed before entering keyword j in the search bar of the search engine. We use Hj as a

proxy for the average number of observable characteristics that the search engine can use

to train its statistical model for keyword j (i.e. the K-dimension). Users who have been

observed more often are likely to reveal more observable characteristics about themselves.11

We rely on the keyword as the fundamental unit of analysis because keywords are gen-

erally observed more often than users. Thus, keywords lend themselves better to analyze

quality changes as a function of data: We do not observe the typical individual often enough

to study how the search experience of individuals changes as the number of searches in-

creases.12

Table 2 shows the summary statistics for the main variables used in the analysis. It

becomes apparent that keywords are generally observed much more often than users. This

implies that the different searches observed for a keyword are generally performed by different

11How the search engine extracts characteristics from the observed search behavior of users is not known
to us. However, it is plausible to assume that a longer history generally corresponds to more observable
characteristics. We are aware that users might delete their cookie cache. In this sense, the term cookie
history might be more appropriate. The chosen terminology underscores the notion that a cookie is generally
associated with a single user.

12Keyword might also be considered a more “homogeneous” unit of analysis. When following individuals,
the experienced quality will heavily depend on the “difficulty” of the different keywords entered by the user.
By contrast, different individuals entering the same keyword are interested in a similar topic.
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users. Thus, the number of searches indeed captures the dimension relevant for across-user

learning. Note that we observe substantial variation in the average user history despite

observing many users only once.

4.2 Additional Considerations

Relationship to Real Search Traffic

A back of the envelope calculation using available data on the search engine market suggests

that the size of our sample corresponds to approximately two percent of the worldwide search

traffic on the Yahoo! search engine during July 2010.13 This suggests that, on average, the

search quantity variables constructed from our sample are 50 times smaller than in reality. In

light of this, the apparently small search quantities reported in Table 2 are likely to capture

substantially larger values in reality.

Search Traffic Prior to the Sample Period

Most keywords likely experienced search traffic already prior to our sample period. Similarly,

most users likely already used Yahoo! before we observe them in our sample. This source

of unobserved heterogeneity is an important factor that we need to account for. In the first

part of our analysis, we will therefore use the observed variables as proxy measures for past

quantities in an attempt to gauge the long-run impact of data. The insights gained from

this analysis will motivate the subsequent analyses. In Appendix A.1, we explain in more

detail why the observed search quantities are likely to be good proxy-measures for the past

search traffic.

13It is estimated that Google’s total search volume in 2010 amounted to roughly 1 trillion searches (see
https://www.internetlivestats.com, last accessed: 15 February 2022). Google’s share in worldwide searches
in 2010 was roughly 90%. Yahoo’s share in searches during the same period amounted to four percent
(see https://www.statista.com, last accessed: 15 February 2022). From this, we obtain that Yahoo’s total
monthly search traffic in 2010 was approximately equal to 3.7 billion searches. Our sample corresponds to
roughly 2 percent of 3.7 billion searches. We have no indication on the geographic scope of the sampling.
The factor 50 is therefore an upper bound. If we assume that the sampling region is the US, we can rely on
the figure of 2.7 billion monthly searches in October 2010 (see https://www.comscore.com, last accessed: 15
February 2022). In this case, our sample would cover roughly 3 percent of all Yahoo! searches in the US.
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July 20th Anomaly

We observe an abnormal drop in the click-through-rate in the period from July 19 to July

21. To the best of our knowledge, this anomaly is related to the testing of a new algorithm in

the wake of the Yahoo!-Bing merger. While the anomaly appears to be transitory, we cannot

exclude the possibility that it might mark the permanent transition to a new algorithm. For

our main analysis we therefore rely on quality measures obtained using observations prior to

the anomaly. The same is true for the number of searches. For the average user history, we

use all the information available in the sample.

We have no indication that the anomaly affects the explanatory variables. To understand

why we prefer keeping all observations when computing the average user history, note that

keywords would barely be differentiated with respect to this variable if we would rely on a

very short time frame for computation. This is the case because most users are only observed

very rarely (see Table 2). As a result, in the extreme scenario with only one day of data,

most keywords would have a average user history close to one. The issue is less pronounced

for the quality measure and the number of searches for which one day of data will generally

result in informative variation across keywords.

We provide an in-depth account of the anomaly in Appendix A.2; there we also report

the results obtained when including observations after the anomaly. Since most keywords

accumulate searches evenly over time (see Appendix A.1), dropping observations during and

after the anomaly does not impact the sample of keywords considered, instead it only affects

the number of observations available per keyword.

5 Results

The results section is structured in three parts. The first part treats the variables observed

during the sample period as proxies for the unobserved search histories in the past. We

document a pattern consistent with faster across-user learning from more user-specific data
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and offer a first interpretation of these results. Building on this, the second part gathers

evidence on the short-run impact of data. By focusing on within-keyword variation in quality,

i.e. quality changes, the second part addresses identification concerns related to the proxy-

variable approach, which focuses on quality levels.

The third part of the analysis directly asks if the observed pattern of faster across-user

learning is caused by user-specific data. The causal mechanism we have in mind relies on

the assumption that the algorithm relies on user-specific data as an input. If this is not

the case, longer user histories cannot cause faster across-user learning through technological

complementarities, because this presupposes that user-specific data constitute an input into

the technology. We design a test that leverages this idea and show that the pattern of

faster across-user learning is only observed for the subset of keywords for which we have

indication that the algorithm relies on user-specific data. In the third part, we also gather

evidence on the intensive margin relationship between user-specific data and efficiency gains

in across-user learning and show that this relationship appears to be S-shaped.

5.1 Proxy-Variable Approach: A Long-Run Perspective

We treat Sj and Hj as proxy variables for Sj and Hj, the unobserved number of searches and

average user history realized before our sample. Under the assumption that data matters,

more searches and a longer average user history in the past should lead to a higher quality

level during the period of our sample.

Denote by bs the bins defined by the deciles of the distribution of S and denote by bh the

bins defined by the median of the distribution of H. To study the impact of past data, we

estimate the following regression:

ctr
{1}
j =

10∑
s=1

2∑
h=1

λsh1{Sj ∈ bs}1{Hj ∈ bh}+ εj (2)

ctr
{1}
j denotes the click-through-rate of keywork j using the observations before the July
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20th anomaly. λsh captures the average click-through-rate conditional on keywords j be-

longing to the bin s and the bin h.

Figure 4 maps the estimated values of λsh against the base ten logarithm of the number

of searches defining the left edges of the bins bs.
14 The black curve stands for keywords with

an average user history below the median, the gray curve for keywords with an average user

history above the median.

Summarizing the results shown in Figure 4, we observe a positive concave relationship

between the number of searches and the average click-through-rate.15 Additionally, this

positive relationship is more pronounced for keywords with a longer average user history.

Thus, keywords with a similar number of searches in the past attained a higher quality

level if we observe a longer average user history.16 The results are therefore consistent with

more user-specific data (longer average user history) leading to efficiency gains in across-user

learning (number of searches).

For a low number of searches, we observe no difference between keywords as a function of

the average user history. This is consistent with complementarities between both dimensions

of data. Lacking data in one dimension reduces the benefits of additional data in the other

dimension. In the OLS-analogy used throughout this article, a lack of searches corresponds

to a lack of observations to estimate the OLS parameters consistently (small N). As a

consequence, the potential benefits form a larger K-dimension cannot be leveraged. We also

note that the positive concave relationship between the number of searches and the increase in

the click-through-rate is consistent with statistical learning theory, which predicts decreasing

returns in the N -dimension (Lerner, 2014; Bajari et al., 2019).

14For the proxy-variable analysis, we use the number of searches observed over the entire sample period.
This is motivated by the fact that the observed total number of searches does not appear to be affected by
the anomaly. Using all the available information about the popularity enhances the proxy-variable property
of our popularity measure. However, our results do not change if we only use the number of searches observed
until the anomaly.

15Note that the x-axis has a logarithmic scale, the range with apparently increasing returns in Figure 4
has, in fact, strongly decreasing returns.

16We refer the reader to Appendix A.1 for a discussion on the properties of Sj and Hj as proxies for Sj
and Hj .
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If we interpret the learning curve from additional searches as a quality-production func-

tion, more user-specific data appear to act as a “technology shifter” leading to more efficient

across-user learning. This offers a novel perspective on the value of data for firms: The firm

with deeper user profiles has an inherent ceteris paribus advantage when confronted with a

novel prediction task (such as a new search keyword) because it can learn faster across-users.

This potential complementarity effect has not yet been documented in empirical applications

using real-world data.17

5.2 Exploiting Short-Run Variation in the Sample

In this subsection, we focus on within-keyword changes in the click-through-rate and the

number of searches during the period of our sample. The question we ask is whether the

observed quality change for a given number of searches is larger if we observe a longer average

user history. This allows us to directly investigate if there is evidence that keywords with

a longer average user history learn more. Exploiting first differences in the quality and the

number of searches helps addressing endogeneity concerns related to the previous analysis

which focused on quality levels instead of quality changes.

From the proxy-variable analysis, we know that the quality level of a keyword is correlated

with its observable characteristics. Keywords with a longer average user history and a larger

number of searches experience, on average, a higher quality level in our sample. Since

the maximum click-through-rate is bounded from above (the click-through-rate lies in the

interval between 0 and 1), ignoring the initial quality is likely to distort the true relationship

between our explanatory variables and the observed quality change.

Since keywords with a longer average user history are more likely to experience a higher

quality level, they have mechanically less scope for quality improvement compared to key-

17The article of Bajari et al. (2019) investigates a similar effect but not in the context of user-generated
data. The mechanism of action they propose resembles economies of scope, where a larger variety shifts
the quality production function from data scale. Bajari et al. (2019) find no effect consistent with this type
of data externality. The pattern we document is related to economies of scope because a larger variety of
keywords helps generating more user-specific data.
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words starting from a lower quality level. Thus, ignoring the quality level is likely to lead to

a downward bias when estimating the relationship between the observed quality change and

the average user history.18

In our analysis of quality changes, we therefore condition on the initial quality level by

computing the initial click-through-rate over the first 100 searches of a keyword. We use

a rather large number of initial searches to mitigate the potential impact of regression to

the mean.19 To obtain two non-overlapping windows of 100 searches, we therefore have to

restrict the analysis to keywords with at least 200 searches.This reduces our sample to 23637

keywords.

To analyze the relationship between the observed quality increase and the average user

history of keywords, we calculate the following statistic for different sub-samples of keywords:

∆ctr1j (s) =
1

NJ

∑
j∈NJ

(
ctr1j (s)− ictr1j

)
(3)

Where s ∈ {1,101,...,4901} denotes the number of searches at the left edge of each 100

searches window, ictr1 denotes the click-through-rate over the first 100 searches, and ∆ctr1j (s)

denotes the increase in click-through-rate observed for keyword j after s searches. In words,

Equation 3 describes the average change in quality between the first window of 100 searches,

ictr1, and all subsequent windows, ctr1(s). With a slight abuse of notation, NJ denotes the

sub-sample of keywords used in the computation of Equation 3.

In Figures 5b to 5d, each curve shows the results obtained for keywords above (gray) and

below (black) the median average user history. Figure 5b shows the results obtained for all

keywords, irrespective of the initial click-through-rate. Figure 5c shows the results obtained

for the sub-sample of keywords starting from a quality level below the median initial click-

18The necessity of controlling for the initial quality, which is a variable that does not vary within keywords,
is the main reason we do not perform a conventional regression analysis with keyword fixed-effects.

19Regression to the mean occurs whenever units are classified based on an initial outcome. Intuitively,
the problem arises because subjects are “erroneously” allocated to a category based on a single (or few)
observation(s), which is not representative of the truth. This erroneous allocation leads to a reversion to the
mean in subsequent observations. Barnett et al. (2004) provide an accessible discussion of the phenomenon.
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through-rate. Figure 5d shows the results for keywords starting from a click-through-rate

above the median. The distribution of the initial click-through-rate is shown in Figure 5a.20

Figure 5 highlights the importance of controlling for the initial click-through-rate. On

average, keywords starting form a high initial click-through-rate do not experience noticeable

quality changes. Since these keywords already reached a high quality level at the beginning

of the sample, they have less scope for learning. By contrast, keywords with an initial click-

through-rate below the median experience sizeable quality changes. Furthermore, for a low

initial quality, the quality increase is more pronounced for keywords with a longer average

user history (approximately five percentage points), which provides further evidence that

user-specific data increase across-user learning efficiency.

When ignoring the initial quality (Figure 5b), there is no apparent difference between

keywords with a longer and shorter average user history. This is the result of the positive

correlation between the average user history and the initial click-through-rate, which leads

to a downward bias when estimating the relationship between the average user history and

the observed quality changes without accounting for the initial click-through-rate.

We note that accounting for the initial quality and focusing on quality changes address

concerns related to reverse causality. For example, one might be worried that more expe-

rienced users search specific keywords more often because they learned that entering these

keywords provides a better search experience. However, the keywords in Figure 5c all start

from a similar low level of quality. Thus, it appears not plausible that there is an ini-

tial quality difference in keywords that leads more experienced users to learn to use these

keywords.

20The plots show the quality evolution until 5000 searches because dropping observations after the anomaly
results in a low number of observations with more than 5000 searches. As is explained in more detail in
Appendix A.1, keywords accumulate searches evenly in our sample. As a result, a keyword with 10000
searches from the first to last day of our sample, will typically have accumulated approximately 5625 searches
until July 18th (our sample spans 32 days, therefore 18

32 = 0.5625).
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5.3 Assessing Causality

In this Subsection we ask whether the observed pattern of faster across-user learning from

more user-specific data is causal. In other words, we ask the question whether the pattern is

a result of technological complementarities between different aggregation dimensions of user

data. A trivial prerequisite for complementarities to become effective is that both dimensions

of data enter the algorithm (i.e. the quality production technology) as an input. If we could

be certain that the algorithm does not exploit user-specific information, we could dismiss the

results presented so far as spurious because technological complementarities could be ruled

out.

The test that we present in this section exploits this insight by classifying keywords in

two groups: The first group consists of keywords for which we have indication that the

search algorithm exploits user-specific information. The second group consists of keywords

for which we have no such indication. If the hypothesis of technological complementarities

is correct, we would expect to observe a pattern of faster across-user learning from more

personal keywords only for the first group of keywords. By contrast, we would not expect

to see faster across-user learning from additional user-specific data for the second group of

keywords.

Our classification method combines two approaches: The first approach relies on the

notion that, if user-specific information plays a role, we should observe changes in the dis-

tribution of search results as a function of the length of the user-history of searchers. The

second approach relies on the notion that search results should change more frequently if

personalization is used for a keyword.

For the first approach, we test whether the frequency distribution of search results varies

between users with long histories and users with short histories. Based on the overlapping

set of search results shown to both group of searchers, we use a Chi-Square Test to test the

null hypothesis of an equal frequency distribution of search results across both groups. The

Chi-Square Test provides a method to assess whether user-specific information is likely to be
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leveraged by analyzing differences in the result distribution. We combine the results of the

Chi-Square Test with a second approach that is based on a variance criterion: If a keyword

personalizes search results we would expect the search results to change frequently. We build

a measure that captures the typical length of search sequence without changes in content.

If the typical sequence is short this indicates that results “rotate” frequently.

We call a keyword “personalizable” if the Chi-Square Test rejects the null hypothesis

and if we find a high variance of search results. All other keywords are classified as “non-

personalizable”. Out of 23637 keywords with at least 200 searches, 4496 are classified as

“personalizable” (19%). We provide a comprehensive description of both approaches used

for classification in Appendix A.3.

Figure 6 shows the average ctr-increase (using Equation 3) for keywords with a long

average user history and keywords with a short average user history for the group of per-

sonalizable keywords (Figure 6a) and the group of non-personalizable keywords (Figure 6b).

The analysis relies on keywords starting from an initial click-through-rate below the median.

We view the results of Figure 6 as providing strong support for the causal mechanism of

data complementarities: Faster learning as a function of user-specific data is only observed

for the group of personalizable keywords. Non-presonalizable keywords do not exhibit a

similar pattern. The observed quality increase for non-personalizable keywords is likely to

capture generic learning, such as popularity based ranking methods, which aim to learn

the most popular results across users. The absence of a pattern consistent with differential

learning in Figure 6b suggests that confounding factors unrelated to data complementarities

are not likely to play a major role in explaining Figure 6a.21

Since non-personalizable keywords appear unaffected by the average user history, we from

now on treat them as a stable benchmark (control group) which allows us to assess the impact

of the average user history on personalizable keywords. To study how the learning difference

21For instance, if differential across-user learning could be explained by keywords with longer average
user histories being “easier” (a confounding factor), we would expect to see faster across-user learning with
a longer average user history in both Figures.
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between personalizable and non-personalizable keywords is, ceteris paribus, related to the

average user history, we use the method of generalized random forests (Athey et al., 2019;

Nie and Wager, 2021), which allows us to estimate β(x) in the following model:

∆ctrj = bjWj + εj

β(x) = E[bj|x]

(4)

Where ∆ctrj denotes the change in click-through-rate between the first and last 100

searches of a keyword and Wj is an indicator variable that takes the value of one if keyword

j is personalizable. bj is the keyword specific marginal effect of personalization, and β(x) is

the average marginal effect, conditional on x, which the generalized random forest estimates.

If, conditional on x, the indicator variable Wj is independent of the error term εj, then β(x)

is identified.

While Figure 6b suggests that confounding factors are unlikely to play a major role in the

complementarities we observe in 6a , correlation between Wj and εj cannot be ruled out. It is

worthwhile emphasizing, that even under confoundedness, generalized random forests remain

an interesting method to descriptively explore the effect of the average user history in a non-

parametric manner. As is explained in Athey et al. (2019), generalized random forests can

be considered efficient kernel estimators, which, compared to conventional non-parametric

methods, offer substantial computational advantages.22

By estimating β(x) for various x, we can assess how the differences in quality changes

between both groups vary with the observed characteristics. In the subsequent analysis, we

include the average user history, the total search quantity and the initial click-through-rate

as variables in the x-vector.23 For instance, by estimating β(H,S = c, ictr = c) for different

22The standard implementation of the generalized random forests in R (grf library), which we use,
automatically prevents overfitting. Compared to more conventional non-parametric estimation methods,
such as local polynomial regressions, the generalized random forest offers substantial savings in computation
costs because it avoids the costly tuning of bandwidth parameters.

23We leave all parameters of the grf library at their default values, except for the number of trees, which
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values of H, we can assess how the difference in ctr-increases between personalizable and

non-personalizable keywords varies as a function of the average user history, when holding

fixed the total search quantity and the initial click-through-rate (ictr).

Before estimating β(x), we perform a matching procedure to balance the observable

characteristics between personalizable and non-personalizable keywords. This is necessary

to apply the generalized random forest method successfully as it requires propensity scores

with good overlap properties.24 We use standard nearest neighbor mahalanobis matching.

In Appendix A.4, we provide an analysis of the covariate balance and describe the matching

procedure in more detail.

Figures 7a to 7d show the results obtained when applying the random forest methodology

to the matched sample of keywords. Each curve shows the estimates for β(x) as a function

of the average user history. Each panel conditions on a different total search quantity. All

panels condition on the same initial click-through-rate of 25 percent. According to the results

shown in Figure 7d, personalizable keywords with an average user history of seven and a

total search quantity of 5476 searches experience a six percentage point larger increase in the

click-through-rate than comparable non-personalizable keywords. No statistically significant

difference is observed when the average user history is short.

For a low number of total searches, we observe no indication for differential learning as

a function of the average user history. With an increasing number of searches, the positive

relationship between the length of the average user history and the differential quality change

increases. This is further evidence for complementarities between the number of searches

and the average user history: A large number of searches is required to leverage the potential

gains from user-specific data.

Interestingly, the results from Figures 7c and 7d suggest that the effect of longer average

we set equal to the number of observations in the sample, as is recommended by the authors of the grf
library.

24Generalized random forests fail to recover even obvious patterns in the data if the groups are not well
balanced, see the “troubleshooting” section on the website of the authors of the grf package: https://grf-
labs.github.io (last accessed on 15 February 2022).
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user histories on efficiency gains from across-user learning is S-shaped. This would imply

locally increasing returns to data. To the best of our knowledge, this is the first empirical

evidence consistent with increasing returns to scale in a particular data dimension.

6 Conclusion

Our results call for awareness from antitrust policy regarding firms seeking to deepen knowl-

edge about their existing customer base. For instance, merging databases across different

services with large overlap in the user base might lead to substantial gains in across-user

learning efficiency.

The documented S-shaped relationship between the amount of user-specific data and

efficiency gains from across-user learning indicates that lack of data might constitute a serious

barrier to entry. Contrary to the scenario with rapidly diminishing returns, a potential

entrant might need to first reach a certain data threshold before starting to benefit from

learning effects.

Our findings suggest that sharing search, query and keyword data may only help restor-

ing a level playing field among competing search engines if those data can be connected

to individual users. Overly cautious anonymization standards might render data sharing

significantly less effective for fostering competition. This is of relevance because current reg-

ulatory suggestions mandating the sharing of data tend to focus on the size of the user base

and less on personal data.25 With relation to the sharing of personal data, commentators

tend to emphasize primarily the need to protect privacy.26

Careful consideration should be given to striking the right balance between preserving

privacy and improving market outcomes. For example, this may mean that search engines

create common user identifiers, based on which search histories can be shared and connected,

25For example, the EU Digital Markets Act explains that “the value of online search engines to their
respective business users and end users increases as the total number of such users increases”(See European
Commission (2020), paragraph 56).

26See, for example, EDPS (2021b), par 32.
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but any personal information subject to privacy regulation would be kept in separate data-

silos, not directly connected to these common user identifiers.
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7 List of Tables

Table 1: Learning from User Click Behavior – Illustrative Example

User 1 ... User i ... User N

Keyword K 0 0 1 1 -
Keyword K - 1 0 0 0 1 0
... 1 0 1 0 1
Keyword j 0 1 0 1 0
... 1 0 1 1 1
Keyword 1 0 0 1 1 1

Stylized example in which the search engine has to predict the taste of user i = N for search results
presented in response to entering keyword j = K. The search engine observes whether previous users
clicked the results for keyword K. Additionally, we assume the search engine observes the clicks each
user left before entering keyword K.

Table 2: Summary Statistics

count mean min p25 p50 p75 max
Searches by Keyword (Sj) 67,652 1,194.04 3.00 19.00 115.00 851.00 10,000.00
Searches by User 29,664,490 2.72 1.00 1.00 1.00 3.00 516.00
Average User History (Hj) 67,652 4.06 1.00 2.79 3.56 4.78 67.33

Quality Measure (ctr
{1}
j ) 67,473 0.47 0.00 0.21 0.45 0.75 1.00

Note: The quality measure is computed using all the available searches observed for a keyword. Using the ctr1

quality measure results in a minimal loss of observations because for some keywords with very few searches,
we only observe clicks on position 0. We observe 67,652 keywords and 29 million users. Our analysis is
performed at the keyword level. The number of searches by user is reported because it forms the basis of the
computation of Hj .
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8 List of Figures

Figure 1: Search Result Layout at Yahoo!, 2011
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Figure 2: Distribution of Final Clicks
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Sample Period T

Keyword j over time t

Sj = 3

Hj =
∑

t∈T Hjt

Sj
User 1

Hjt = 10

User 2

Hjt = 13

User 3

Hjt = 19

Figure 3: Computation of Explanatory Variables

Note: We label the individual user histories by t to indicate that we use the length of the user history at the
time of search. We also do not discriminate between users that search the keyword once or several times,
which is the reason why we do not use a user-specific subscript (i). In general, the contribution of one
single user in the total number of searches a keyword experiences is small (see the discussion of the summary
statistics of Table 2).
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Figure 4: Average Click-Through-Rate

Note: The error bars denote the 95% confidence interval using robust standard errors.
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(c) Keywords with init. quality below median
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(d) Keywords with init. quality above median

Figure 5: Analysis of Quality Changes

Note: Only keywords with at least 200 searches are considered. The upper right panel shows the results
unconditional on the initial quality. The lower left and lower right panels show the results for keywords
below and above the median initial click-through-rate, respectively.
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Figure 6: Analysis of Quality Changes - Personalizable vs Non-personalizable Keywords

Note: Only keywords with at least 200 searches and an initial click-through-rate below the median are
considered. The shaded areas denote the 95% confidence intervals.
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Figure 7: Generalized Random Forest Results

Note: The range of the x-axes are determined by the first and ninth decile of the distribution of the average
user history. Each panel stands for a selected decile of the total search quantity. The initial click-through-
rate is set to 25% throughout. Error bars denote 95% confidence intervals.
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A Appendix

A.1 Proxy-Variable Property of Explanatory Variables

In this Appendix, we provide evidence that most keywords in our sample accumulate searches
linearly over time. We also provide a more formal exposition for why this is likely to improve
the proxy-variable property of our explanatory variable in the proxy-variable analysis of
Subsection 5.1.

Consider the cumulative number of searches of a keyword, S. Note that the cumulative
number of searches can always be rewritten as S = S × T , where T denotes the number of
periods (for example months) the keyword existed. S denotes the average per period popu-
larity (the monthly popularity) of the keyword. In our analysis, we observe one realization
of the monthly popularity of a keyword, S.

We are interested in the quality of S as a proxy for S. We can assess the quality by
analyzing Var(S × T |S). The smaller the variance of S = S × T given S, the better the
proxy-variable property of S for S. Note that for a population of keywords with steady
popularity we have that Var(S|S) is small because observing S is informative about S for
all keywords in this population. In the extreme case in which the monthly popularity is

perfectly constant, we have Var(S|S) = 0. It holds that Var(S × T |S) = Cov(S
2
,T 2|S) +(

Var(S|S) + E(S|S)2
)(

Var(T |S) + E(T |S)2
)
−
(
Cov(S,T |S) + E(T |S)E(S|S)

)2
. Clearly,

reducing Var(S|S) reduces the overall variance.
We can use the above formalization to reason under which conditions the proxy variable

preserves the ordinal ranking of the variable of interest, on average. S preserves the ordinal
ranking of S, on average, if ∂E(S × T |S)/∂S > 0. For exposition, consider the case in
which the monthly popularity is perfectly steady, i.e. S = S. Then ∂E(S × T |S)/∂S =(
E(T |S)/∂S × S

)
+ E(T |S). Clearly, the second term is always positive. Thus, under

constant monthly popularity, a sufficient condition for preserving the ordinal ranking is that
the monthly popularity of keywords is not negatively correlated with their “age”.

The average user history depends on the type of users searching a keyword. High intensity
types lead to a longer average user history. Thus, the quality of the proxy variable cannot
be argued for in the same way. The evolution of the average user history over time is not
only determined by the popularity. However, the assumption that a keyword with a steady
popularity has also reached a steady state in terms of the type of users searching the keyword
appears reasonable. If this is the case, the type of users we observe is informative of the type
of users searching the keyword before our sample.

We now proceed by providing evidence that most keywords existed already prior to our
sample and that the majority reached a steady popularity level, i.e. accumulate searches
linearly with time. To do so, we first analyze how many new keywords appear each day
in our sample. A new keyword is simply a keyword that has not been observed previously.
Figure A.1a shows the number of new keywords appearing each day. Clearly, most keywords
appear within the first days of our sample. This is in line with the notion that the majority
of keywords already originated prior to the sample. Otherwise, one would expect a larger
share of keywords appearing during the period of our sample.

Figure A.1b shows the cumulative distribution of the maximum daily accumulation rate
of keywords. For each keyword with at least 32 searches, we compute the percentage of total
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Figure A.1: Proxy-Variable Property of Observed Variables

searches a keyword accumulated each day and take the maximum value. For example, a value
of 50 percent indicates that a keyword accumulated more than half of the total searches it
experienced in the sample in one day. Figure A.1b shows that for more than 80 percent of
keywords the maximum accumulation rate is smaller than 10 percent. This is clearly not in
line with a strongly oscillating or trending popularity for most keywords and rather suggest
that most keywords accumulate searches steadily.

We focus on keywords with at least 32 searches because daily intervals offer an intuitive
measure to assess how evenly searches accumulate over time. Over our 32 day sample period,
a keyword with perfectly steady daily popularity would accumulate 1/32 searches per day.
For keywords with less searches this intuitive criterion fails. Note that, for a keyword with
exactly 32 searches, four searches in one day would already constitute more than 10 percent
of all total searches. Since keywords with few searches dominate numerically in the sample,
it is remarkable that so few keywords exceed the ten percent threshold in Figure A.1b.
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A.2 July 20th Anomaly

There is an anomaly in our data which is characterized by a significant drop of the observed
click-through-rate on July 20, 2010. To the best of our knowledge, this drop is likely to
capture a technical issue related to the testing of a new algorithm in the context of the
Yahoo!-Bing merger. Figure A.2a reveals that the day of July the 20th is characterized by
an exceptionally high share (60 percent) of searches ending without any recorded user action
(i.e. the log records no click).

It is unlikely that the large share of searches without any recorded click can be entirely
explained by a change in the content presented to the searchers: Firstly, it is unlikely that
searchers would not even try to click on some links, even if these links appear unreasonable.
Secondly, and less speculative, our analysis of the content presented to users in Figure A.2b
reveals that the number of new results pages was not particularly high on the day of July
20th. This suggests that the magnitude of the anomaly might be best explained by a bug in
the logging technology, i.e. the technology used to record the actions of users.
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Figure A.2: July 20th Anomaly.

While the full magnitude of the anomaly is unlikely to be explained by a change in
intrinsic quality, our analysis also reveals that there are two spikes in the amount of new
content appearing around the day of the anomaly (July 19th and July 21st). Additionally,
we have narrative evidence that Yahoo! was planning to test a new algorithm around the
same time. In fact, shortly before July 20, 2010, Yahoo! publicly announced its intention to
begin testing Microsoft’s search engine online:

“Though much of our testing is already happening offline, this month we’ll also
test the delivery of organic and paid search results provided by Microsoft on live
Yahoo! traffic” - Yahoo Website, July 15, 201027

Given this publicly available information, it appears cautious to assume that the anomaly
could be indicative of the beginning of a longer testing period. To safeguard against the

27See https://web.archive.org/web, last accessed on 15 February 2022.
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possibility that our results might be affected by a more permanent change, we restrict the
analysis presented in the main text to searches observed until July 18th.

Figures A.3 and A.4 replicate the results from Subsection 5.3 using the full sample period
to compute quality changes. We now only exclude observations for the three-day period from
July 19th to July 21st instead of dropping all observations after July 18th. For example, when
computing the average quality change in the click-through-rate between the first window of
100 searches and subsequent windows of 100 searches shown in Figure A.3, we remove all
windows which contain searches overlapping with one day of the three day anomaly. The
results in Figure A.3b indicate that, despite excluding these observations, searches after the
anomaly might be affected by non-transitory changes, as we observe peculiarities in the data
starting at around 6000 searches, which roughly marks the transition from the period before
to the period after the anomaly for very popular keywords: Since keywords accumulate
searches linearly over time (see Appendix A.1), the day of July 20th typically corresponds
to approximately 19

32
= 0.59, i.e. 59 percent of total searches, i.e. almost 6000 searches for

the group of keywords with 10000 searches in total. This group numerically dominates the
sample of keywords reaching large search quantities.
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(a) Personalizable keywords
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Figure A.3: Analysis of Quality Changes - Personalizable vs Non-personalizable Keywords

Note: Only keywords with at least 200 searches and an initial click-through-rate below the median are
considered. The shaded areas denote the 95% confidence intervals.
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Figure A.4: Generalized Random Forest Forest Results

Note: The range of the x-axes are determined by the first and ninth decile of the distribution of the average
user history. Each panel stands for a selected decile of the total search quantity. The initial click-through-
rate is set to 25% throughout. Error bars denote 95% confidence intervals.
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A.3 Description of Keyword Classification Method

In this Appendix, we describe the procedure we employ to classify keywords into personal-
izable and non-personalizable keywords. Our classification method is based on a mixture of
two criteria. The first criterion relies on the notion that additional information should lead
to different search results. The second criterion relies on the notion that personalization
should be reflected in a higher variation of search results displayed.

Criterion I: More information should lead to different search results

The first criterion relies on the notion that, if user-specific information plays a role, changes
in search results should be related to the amount of user-specific data we observe for a user.
We now describe how we develop a classification method based on this insight.

First, for each keyword, we determine the distribution of user history lengths for all
users searching a keyword. We use the user history observed over the entire sample. This
allows us to group users in two groups for each keyword: Users with a user history above
the upper quartile and users with user histories below the lower quartile. The quartiles are
determined based on the user history distribution observed for each keyword. Second, for
each keyword and top-ranked search result combination, we compute the number of times
this search result was shown to searchers in both groups. Third, for the overlapping set of
top-ranked search results shown to both groups of users, we test the null hypothesis that the
frequency distribution of search results is the same across both groups using the Chi-Square
Test.

We use the distribution obtained for a short average user history as distribution under
the null hypothesis. If the null hypothesis is rejected at a five percent level of significance,
we classify the respective keyword as potentially “personalizable”.28

Criterion II: Personalizable keywords should have a higher variance

The criterion described above relies on the assumption that observing systematically different
distributions of search results as a function of the length of the user history is a strong
indicator for the reliance on user-specific information.

The Chi-Square Test is based on the overlapping set of search results shown for low- and
high-intensity users. Note that the Chi-Square Test will never lead to classify a keyword as
perosnalizable if this keyword exhibits no variance in search results. This leads us to the
second criterion we use for classification: The purely variance-based criterion, which we now
describe in more detail.

The variance-based criterion relies on the number of times the top -ranked search result
“rotates”.29 More precisely, for each keyword, we compute the median “periodicity” of the

28For the Chi-Square Test, it is recommended that the absolute frequency of every single search result
should exceed four under the null hypothesis. We therefore drop search results that are shown weakly less
than four times under the null hypothesis. For some keywords, this procedure results in only one search
result remaining after we drop search results shown less than four times. If this is the case, we test whether
the relative frequency of the single search result is the same. To do so, we employ a simple T-Test instead
of a Chi-Square Test.

29It is important to note that a personalization does not necessarily require a great number of different

39



top-ranked URL. We define the periodicity as the number of consecutive searches the same
search result is shown. The median periodicity therefore captures the typical length of
sequences of searches without result variation. For example, a median periodicity of two
says that the typical consecutive number of times the same search result was shown is two.

We normalize the periodicity by the number of total searches to make the measure com-
parable across keywords with different popularity levels: If a keyword has only 100 searches,
a median periodicity of 100 corresponds to no change in search results, while for a keyword
with 10000 searches, a median periodicity of 100 indicates relatively frequent changes in the
top-ranked URL. We call the normalized measure the relative periodicity.

The problem with the relative periodicity measure, when used as the sole criterion, is that
there might be keywords with frequent changes in the top-ranked URL that are not person-
alizable, such as news-related keywords leading to constantly updated newspaper URLs with
the most recent news relating to a VIP (”US president” or ”California Governor”) or events
of elongated public interest (”war in Afghanistan” or ”US Midterms”). Such keywords might
exhibit frequent changes, even without personalization.

Combination of Both Criteria

Figure A.5 shows the histograms of the relative periodicities for keywords for which the null
hypothesis of the Chi-Square Test was rejected and the complementary set of keywords.
As can be seen, the Chi-Square Test naturally select keywords with a shorter periodicity.
However, we also observe a small fraction of keywords with a long periodicity for which the
null was rejected.

Figure A.5 also illustrates that there is a substantial fraction of keywords with a short
relative periodicity for which the null hypothesis of the Chi-Square Test is not rejected. As
explained above, news-related keywords are likely candidates.

We therefore combine both approaches and consider keywords as personalizable only if
the null hypothesis of the Chi-Square test has been rejected and the relative periodicity
is below 0.1 (indicated by the black vertical line in Figure A.5). While the periodicity
threshold is arbitrary, it appears desirable to remove keywords with a very large periodicity
as it appears implausible that those keywords indeed personalize search results. Based on
this procedure, out of 23637 keywords with more than 200 searches, 4496 keywords are
classified as personalizable.

We performed robustness checks using either one of the criteria as sole classification
method and found qualitatively consistent, albeit less clear results.

search results. To better understand why this is the case, consider the example of the keyword “mouse”: In
a hypothetical world with only two potential search results, the Wikipedia article about the rodents and the
Wikipedia article about the computer hardware, there might still be substantial gains from personalizing
search results to animal or computer enthusiasts.
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A.4 Matching Procedure and Covariate Balance

This Appendix describes the matching procedure used to create the matched sample for
the generalized random forest estimation and provides details on the covariate balance be-
tween the group of personalizable and non-personalizable keywords for both the original and
matched sample. For details on the classification procedure, see Appendix A.3.

Matching is performed using greedy one-to-one nearest neighbor matching. For each per-
sonalizable keyword, we find the nearest non-personalizable neighbor. The distance metric
used is the mahalanobis distance. Matching is performed without replacement. The matched
sample consists of 8992 keywords.

Table A.1 shows the means and the differences in means between both groups of keywords
for the key explanatory variables. Figure A.6 shows the corresponding distributions. The
matching is successful in that it achieves balance in the covariates (both in terms of means
and distributions).

The last row of Figure A.6 shows the estimated propensity scores for the original (Sub-
figure A.6g) and matched sample (Subfigure A.6h). The propensity scores are automatically
obtained when estimating the generalized random forest in R. The propensity scores of the
original sample are not bounded away from zero. This results in poor overlap and is known
to adversely affect the performance of the generlaized random forest. Subfigure A.6h reveals
that the matched sample has substantially better overlap.

Table A.1: Covariate Balance - Original and Matched Sample

Original sample Matched sample
pers. = 0 pers. = 1 Diff. pers. = 0 pers. = 1 Diff.

Average user history 4.59 4.69 0.1 4.68 4.69 0.01
(0.03) (0.04)

Initial click-through-rate 0.56 0.42 −0.14 0.43 0.42 −0.01
(0.00) (0.01)

Number of searches 1730.54 2488.32 757.78 2470.95 2488.32 17.37
(35.26) (45.93)

Note: The table shows means and mean differences between non-personalizable (pers =
0) and personalizable (pers = 1) keywords. The values in parantheses denote standard
deviations.
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Figure A.6: Covariate Balance in Original and Matched Sample

Note: Each panel shows the distribution of variables for personalizable and non-personalizable keywords.
Panels in left column refer to the original sample. Panels in the right column refer to the matched sample.
Propensity scores were estimated using random forests.
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