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1 Introduction

Pandemics inflict a substantial toll. They also roil asset markets. In this paper, we show that
unanticipated changes in predicted infections based on daily re-estimation of simple models of
infectious disease forecast stock returns. This relationship is consistent with investors using such
models to update their beliefs about the economic severity of the outbreak, in real time, as they
attempt to gauge risk in the face of substantial uncertainty (Knight, 1921; Keynes, 1937).

We emphasize that we are not epidemiologists and are not outlining a method to characterize the
true path of pandemics, or infer the efficacy of various intervention strategies.1 Such efforts, while
of immense value, require data which may not be available until after the outbreak is substantially
underway. Rather, we view real-time changes in the predicted severity of an outbreak as potentially
useful summary statistics of its consequences, especially before the true model is revealed.

We model cumulative infections as either exponential or logistic. We re-estimate the parameters
of these models each day of the outbreak using information on the trajectory of reported cases up to
that day, which arrives after trading closes on that day. We then use these parameters to compute
the predicted number of cases for trading day t using the cumulative counts reported after closing
on days t − 1 and t − 2. The difference in these forecasts for day t, therefore, reflect changes in
expectations about the trajectory of the pandemic based on the newly available information. We
then examine how these differences in projections covary with aggregate market returns on day t.

Applying this procedure to the 2003 SARS outbreak in Hong Kong and the current United
States COVID-19 pandemic, we find that sharper increases in predictions are associated negatively
with larger swings in market returns. Coefficient estimates imply declines of 8 to 11 percent in
the Hang Seng index in Hong Kong in response to a doubling of predicted cases during the SARS
outbreak. For the United States during COVID-19, we find, thus far, a similar relationship: a
doubling of predicted cases implies an aggregate market decline of 4 to 10 percent in the Wilshire
5000 index. These findings suggest equity markets are less responsive to new cases the more they
adhere to previously estimated parameters.

We find that changes in forecasts retain their explanatory power even after controlling for a
simpler summary of the severity of the outbreak, the most recent increase in reported cases. In
contrast to this simple measure, estimated model parameters explicitly predict the eventual number
of people that may be infected (e.g., the “carrying capacity” under the logistic model), and the
speed with which that number may be reached. For example, a jump in estimated share of the
population that ultimately will be infected suggests a larger labor supply shock, while an increase
in the estimated growth rate of infections has implications for healthcare capacity constraints.

While our results at present focus on SARS and COVID-19 in Hong Kong and the United
States, we are expanding the set of countries under study, and have begun a similar analysis for the
2009 H1N1 outbreaks. We also have begun investigating the link between returns and exposure to
pandemics at the firm level. Such exposure may vary along various channels, including domestic
and international input-output linkages, as well as the demographics and occupations of firms’ labor
forces.

Our analysis contributes to several literatures. First, we add to the very large body of research
on asset pricing that examines the predictability of stock returns. Seminal papers by Campbell and
Shiller (1988), Fama and French (1988) and others show that factors ranging from valuation ratios
to corporate payout and financing policies forecast stock returns. In this paper we draw upon
standard epidemiological models to infer how investors might update their beliefs about disease
progression.

1Piguillem and Shi (2020) and Berger et al. (2020), by contrast, use estimates of micro-founded SIR models to
argue that expanded testing generates substantial welfare gains relative to quarantines.
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Second, our planned examination of firm returns in response to changes in model predictions
contributes to numerous studies in corporate finance, pioneered by Ball and Brown (1968) and
Fama et al. (1969), which use plausible changes in investors’ information sets to understand market
dynamics. In a typical event study, researchers examine specific events, such as an earnings an-
nouncements, that may release information relevant to investors’ beliefs about firm market value.
Firms’ “abnormal” returns relative to a benchmark asset pricing model during such events sum-
marize these changes expectations.2 Here, we demonstrate that plausibly exogenous changes in the
daily information set regarding the epidemic’s trajectory are correlated with firms’ stock returns.3

Third, our paper contributes to the very large literature in public health which attempts to
explain the trajectory of infections during a pandemic.4 In contrast to that research, we link
changes in the estimated parameters and predictions of these models in real time to economic
outcomes. To reiterate, we do not claim that the evolution of a pandemic must follow a purely
exponential or logistic growth path. Rather, we explore whether the predictions of these models
are informative of economic conditions, as manifest in their correlation with the market.5 An
interesting question for further research is the extent to which feedback from the predicted health
and economic consequences of the outbreak affects future infections. For example, dire enough
anticipated economic consequences might influence the set of policies used to combat the outbreak,
thereby altering its trajectory (Lucas, 1976).

Finally, this paper relates to a rapidly emerging literature studying the economic consequences of
COVID-19, and a more established literature investigating earlier pandemics. Barro et al. (2020),
for example, argue that the decline in output during the 1918 to 1920 “Spanish Flu” epidemic
provide a plausible mode of the economic consequences of COVID-19. Our analysis complements
(Ramelli and Wagner, 2020), who focus on debt and international supply chains as key channels of
exposure to the COVID-19 epidemic, and Gormsen and Koijen (2020), who use the performance
of US futures’ markets during the outbreak to infer bounds on future GDP growth.

This paper proceeds as follows. Section 2 provides a brief description of infectious disease
models and how investors might link the predictions of these models and to asset prices. Section 4
applies our framework to COVID-19. Section 5 concludes.

2 Modeling

In this section we outline how infectious disease outbreaks can be modeled in real time, and how
investors might make use of the model’s estimated parameters.

2.1 Epidemiological Models of Infectious Diseases

Exponential and logistic growth models are frequently used in biology and epidemiology to model
infection and mortality. An exponential model,

Cit = aie
(rit) (1)

2Wang et al. (2013), for example, examines how the stocks of Taiwanese biotechnology companies respond to a
series of infectious disease outbreaks.

3Greenland et al. (2019) exploit a change in US trade policy to identify firms’ exposure to greater import compe-
tition from China.

4Early contributions to this literature include Ross (1911), Kermack and McKendrick (1927), Kermack and McK-
endrick (1937) and Richards (1959).

5For an interesting discussion on the complexities associated with modeling an outbreak in real time, see https:

//fivethirtyeight.com/features/why-its-so-freaking-hard-to-make-a-good-covid-19-model/.

2

https://fivethirtyeight.com/features/why-its-so-freaking-hard-to-make-a-good-covid-19-model/
https://fivethirtyeight.com/features/why-its-so-freaking-hard-to-make-a-good-covid-19-model/


predicts the cumulative number of cases in country i on day t, Cit, as a function of the growth
rate of infections in that country, ri, the initial number of infected persons ai, and time. In an
exponential model, the number of infections per day continues to climb indefinitely. While clearly
unrealistic ex-post, the exponential growth model is consistent with early stage pandemic growth
rates.

In a logistic model (Richards, 1959), by contrast, the growth in infections grows exponentially
initially, but then declines as the stock of infections approaches the population’s “carrying-capacity,”
i.e., the cumulative number of people that ultimately will be infected. Carrying capacity is generally
less than the full population. In a logistic model, the cumulative number of infections for country
i on day t is given by:

Cit =
ki

1 + cie(−rit)
, (2)

where ki is the carrying capacity for country i, ci is a shift parameter (characterizing the number
of initially infected persons in country i) and ri is the growth rate. Figure 1 provides an example
of logistic infections for three different growth rates (2.5%, 5% and 7.5%) assuming ki = 250 and
ci = 50. For each growth rate, we plot both the cumulative number of cases as of each day (left
axis) and the number of new cases each day (right axis). As indicated in the figure, higher growth
rates both shorten the time required to reach carrying capacity, and increase the peak number of
infections.

Figure 1: Example of Logistic Pandemic with Different Rates of Infection

Source: Authors’ calculations. Figure compares new and cumu-
lative infections from days 1 to 200 assuming a logistic model
with ki = 250 and ci = 50 and noted growth rates (ri).

Given data on the actual evolution of infections, the two parameters in equation 1 and the three
parameters in equation 2 can be updated each day using the sequence of infections up to that date.
We estimate these sequences using STATA’s nonlinear least squares command (nl).6 STATA’s nl

command requires a vector of starting values, one each for each parameter to be estimated.
We encounter two problems during our estimation of logistic functions in our applications below.

First, estimates for each day t are sensitive to the choice of starting values for that day, particularly
in the initial days of the pandemic. This feature of the estimation is not surprising: when the
number of cases is relatively small, the data are consistent with a wide range of logistic curves, and
the objective function across them may be relatively flat.

6We are exploring other estimation procedures for use in a future draft, including use of SIR and SEIR models,
e.g., Li et al. (2020) and Atkeson (2020).
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To increase the likelihood that our parameter estimates represent the global solution, we estimate
500 epidemiological models for each day, 250 for the logistic case, and 250 for the exponential case.
In each iteration we use a different vector of starting values. For each day t, our first starting values
are the estimated coefficients from the prior day, if available.7 In the case of the logistic model, we
then conduct a grid search defined by all triples {r, c, k} such that

r ∈ {0.01, 0.21, 0.41, 0.61, 0.81}

c ∈ {ĉt−1
i , 2 ∗ ĉt−1

i , 4 ∗ ĉt−1
i , . . . , 10 ∗ ĉt−1

i }

k ∈ {k̂t−1
i , 2 ∗ k̂t−1

i , 3 ∗ k̂t−1
i , . . . , 10 ∗ k̂t−1

i

where hats over variables indicate prior estimates, and superscripts indicate the day on which they
are estimated. If more than one of these initial starting values produces estimates, we choose the
parameters from the model with the highest adjusted R2. We estimate the exponential model
similarly.

The second, more interesting, problem that we encounter during estimation of the logistic
outbreak curves is that STATA’s nl routine may fail to converge. This failure generally occurs in
the transition from relatively slow initial growth to subsequent, more obviously exponential growth
as the pandemic proceeds. During this phase of the outbreak, the growth in the number of new cases
each day is too large to fit a logistic function, i.e., the drop in the growth of new cases necessary
to estimate a carrying capacity has not yet occurred. As a result, and as discussed further below,
we estimate both exponential and logistic models for each day of the outbreak. In a future draft
we will consider an estimation strategy that nests these functions.

Figure 2 provides an example of simulated “actual” cumulative cases and an estimate of the
underlying logistic function for 200 days, using equation 1 to simulate actual data.8 The predicted

values use the cumulative path of reported infections up to day 200 to estimate k̂200
i , ĉ200

i , and r̂200
i ,

and thereby generate predicted cases for each day. As indicated in the figure, inflection point of
the logistic curve – a crucial moment in the evolution of the outbreak – occurs at the peak of the
new cases curve.

In our application below, we re-estimate the parameters of the exponential and logistic curves

each day. That is, for the logistic curve, we estimate k̂ti , ĉ
t
i, and r̂ti at each day t using the sequence

of infections observed up to day t − 1. To fix ideas, the left panel of Figure 3 illustrates how the
logistic parameters evolve over time using the simulated data from Figure 2. As shown in the
figure, the estimates in this example are highly volatile in the early stage of the outbreak, are not
available due to lack on convergence for days 47 through 78, and then begin to settle down shortly
thereafter.

The right panel of Figure 3, by contrast, reports the analogous evolution of the parameters of
the exponential estimation. Here, estimates are also volatile in the early days of the pandemic, and
settle down near day 50. In contrast to the logistic estimation, parameters are available for each
day, i.e., the estimation does not suffer from a lack of convergence. The intuition for the increase
in âit and decline in r̂it as days near 200 is as follows: because the simulated data are logistic, the
only way to reconcile them with an exponential function is to assume that the initially exposed
(âit) is larger, and that the infection spread with a lower growth rate, r̂it .

7If the prior day did not converge, we use the most recent prior day for which we have estimates.
8Simulated data are created by computing Cit = ki

1+cie
(−rit)

+ |εt|, assuming ki = 250, ri = .025, ci = 50 and |εt|
is the absolute value of a draw from a standard normal distribution.
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Figure 2: Simulated Logistic Pandemic

Source: authors’ calculations. Figure compares estimated new
and cumulative cases for each day (circles) against “actual” val-
ues of those quantities using the simulation procedure noted in
the main text. The “actual” data for all 200 days are used to
perform the estimation.

Figure 3: Parameter Estimates Using Simulated Logistic Pandemic

Source: authors’ calculations. The left panel plots the sequence of logistic parameters, k̂it , ĉit and r̂it ,
estimated using the information up to each day t on the simulated data displayed in Figure 2. Right panel
of Figure plots the analogous sequence of exponential parameters, âit and r̂it , using the same data. Missing
estimates indicate lack of convergence (see text). Circles represent estimates. Solid lines connect estimates.

Parameter estimates based on the reported cumulative cases as of day t − 1 can be used to

predict the cumulative number of cases on day t, Ĉt−1
it , where the superscript t − 1 refers to the

timing of the information used to make the prediction. Ĉt−1
it can be compared to the forecast for

day t based on the cumulative number of cases as of one day earlier, Ĉt−2
it . Differences in these

predictions capture unexpected changes in severity of the outbreak
Figure 4 compares predicted infections under the logistic (left panel) and exponential (right

panel) models using parameters estimated from the cumulative reported infections up to days 10,
20, 44, 78, 105 and 160.9 In each case, forecasts are given from the day after the last data used
until day 200.

As indicated in the figure, early predictions can differ substantially from later predictions.
Comparison of the panels in Figure 4 reveals that the parameter estimates, and therefore predicted
infections, between days 44 and 78 – i.e., before and after lack of convergence – differ more for the

9The logistic prediction for day 44 is the final one available until day 78 due to lack of convergence.
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Figure 4: Predicted Cumulative Cases Using Different Days’ Estimates (Simulated Data)

Source: authors’ calculations. The right panel plots the predicted sequence of cumulative infections using
parameter estimates from the noted day reported in Figure 3. The left panel plots the analogous predictions
for the exponential model.

logistic model than the exponential model. More generally, while both sets of estimates exhibit
wide variation in the number of cases expected at day 200, this variation is far greater for logistic
model estimates.

Finally, Figure 5 compares the logistic and exponential predicted cumulative cases for each day

t based on the information available up to day t−1, denoted Ĉt−1
it , where the subscript refers to the

prediction day and the superscript refers to the day of the information upon which the prediction

is based. The figure also reports analogous predictions for the new cases on each day t, N̂ t−1
it .

Figure 5: Comparison of Daily Predictions (Ĉt−1
it ) for Simulated Logistic Pandemic

Source: authors’ calculations. Figure compares simulated “actual” cumulative in-

fections to predicted infections (Ĉt−1
it ) under the logistic and exponential models.

The prediction for each day t is based on the information available up to day t− 1.
The two vertical lines in the figure note when the 95 percent confidence inter-
vals of the two models’ predictions initially diverge, and when the logistic model’s
estimates first indicate that its inflection point has passed.

As illustrated in the figure, Ĉt−1
it for the exponential and logistic models line up reasonably well

during the initial phase of the pandemic, but begin to diverge at t = 104, when the 95 percent
confidence intervals for both predictions (not shown) no longer overlap. It is after this point that
the logistic model’s predictive power begins to exceed that of the exponential model. Indeed, while
the exponential model continues to project an ever-increasing number of infections, the logistic
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model’s predictions head towards the estimated carrying capacity.10

2.2 Modeling Economic Impact

Changes in the predictions of the exponential and logistic models of infectious disease described
above may be an important input into investors’ assessment of the economic impact of a pandemic.
For example, a jump in estimated carrying capacity suggests a larger ultimate supply shock in terms
of lost labor supply, while an uptick in the estimated growth rate has implications for healthcare
capacity constraints.11

In our analysis below, we relate information on reported infections to market returns according
to the following timing. At the beginning of day t (before markets open) the number of infections
occurring on day t−1 (released after trading ends on day t) is observed. This day t−1 information

is used to predict the number of cases for day t, denoted Ĉt−1
it , where the t−1 superscript indicates

denotes the day of the information upon which the prediction is based.
In our application below, we compare the change in daily market return, ∆ln (MVit), to the log

change in the number of predicted cases for day t using information from days t− 1 and t− 2,

∆ln (MVit) = α+ β1 ∗∆ln

(
Ĉ−2,−1
it

)
+ β2Xit + εit (3)

where

∆ln

(
Ĉ−2,−1
it

)
= ln

(
Ĉt−1
it

)
− ln

(
Ĉt−2
it

)
. (4)

Intuitively, ∆ln(Ĉ−1,−2
it ) captures the unanticipated growth in cases due to a change in the estimated

severity of the epidemic. Since both Ĉt−2
it and Ĉt−1

it are forecasting the cumulative number of cases
at time t, the difference between them captures the impact of the new information revealed about

the epidemic between t− 2 and t− 1. That is, ∆ln(Ĉ−1,−2
it ) is the change in expected cumulative

cases due to the updated epidemiological model.12

3 Application to SARS

In this section we examine the relationship between changes in infection predictions and aggregate
US market returns during the Severe Acute Respiratory Syndrome (SARS) epidemic. According to
the World Health Organization, the first SARS case was identified in Foshan, China in November
2002, but was not recognized as such until much later. According to WHO (2006), on February 10,
2003 a member of the WHO in China received an email asking:

“Am wondering if you would have information on the strange contagious disease (similar
to pneumonia with invalidating effect on lung) which has already left more than 100

10The separation of the 95 percent confidence intervals of the two models’ predictions might be one decision rule
that determines a switch from the exponential to the logistic model in real time. Another might be when the logistic
model’s estimates first indicate that its inflection point has passed. In the logistic model, this point is given by
ln(ĉit)/r̂it. It is noted in Figure 5 by the second dashed vertical line.

11As noted in the introduction, the evolution of these parameters may also trigger policy ”events” either directly
or as a result of their economic consequences, which may alter the underlying parameters of the outbreak. We do
not currently account for such feedback, but plan to do so in a future draft.

12We are currently exploring more flexible specifications, e.g., those which might capture the switch between
exponential and logistic models, as well as those which reveal any over- or undershooting of reactions.
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people dead in ... Guangdong Province, in the space of 1 week. The outbreak is not
allowed to be made known to the public via the media, but people are already aware of
it (through hospital workers) and there is a ‘panic’ attitude.”

The WHO immediately began and investigation into SARS, and started releasing regular reports
of suspected and confirmed cases beginning March 17, 2003.13 The World Health Organization
(WHO) declared SARS contained in July 2003, though cases continued to be reported until May
2004. Figure 6 plots the cumulative number of confirmed SARS infections worldwide (left scale)
and in Hong Kong (right scale). The two vertical lines in the figure note the days on which the
WHO officially received the aforementioned email, and the first day on which the WHO began
reporting the number of infections on each weekday.

Figure 6: SARS Infections in Hong Kong and Worldwide During 2003

Source: World Health Organization and authors’ calculations. Figure
displays the cumulative reported SARS infections in Hong Kong and
the rest of the world from January 1, 2003 to July 11, 2003. The two
vertical lines in the figure note the days on which the WHO officially
received the aforementioned email, and the first day on which the
WHO began reporting the number of infections on each weekday.

Hong Kong and China accounted for the vast majority of cases worldwide.14 We focus our
analysis on Hong Kong for two reasons related to data reliability. First, while China acknowledged
having over 300 cases of “atypical pneumonia” in February, the Ministry of Health did not provide
day-by-day counts until March 26. In fact, on March 17, the day before WHO began releasing daily
situation reports, Chinese authorities informed the WHO that “[t]he outbreak in Guangdong is said
to have tapered off.” The next day, cases were reported in 8 locations other than China – including
Hong Kong. When China did begin reporting daily counts, on March 26, the first count was 800
cases. This large initial level of infections accounts for the sharp jump in World counts displayed
for that day in Figure 6. Lack of real-time infection updates prior to this jump undermines reliable
estimation of model parameters, thereby impeding accurate assessment of unanticipated changes
in infections. Second, it is unclear how China’s restrictions on foreign ownership of companies’ “A
shares” during this period affects the extent to which such unanticipated changes will be reflected
in Mainland firms’ equity value.

We estimate equations 1 and 2 by day for each country as discussed in Section 2. The daily

parameter estimates for the logistic estimation, k̂ti , ĉ
t
i and r̂ti are displayed graphically in the left

panel of Figure 7. The right panel displays analogous estimates for the exponential function. Gaps

13Counts were released every weekday. These data can be downloaded from https://www.who.int/csr/sars/

country/en/. A timeline of WHO activities related to SARS events can be found at https://www.who.int/csr/

don/2003_07_04/en/.
14Reported cases for China are plotted in appendix Figure A.2.
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in either panel’s time series represent lack of convergence. As indicated in the figure, logistic
parameters fail to converge for several days early in the outbreak, and then once again when the
estimates have started to settle down in the beginning of May. The exponential model, by contrast,
converges on every day in the sample period.

Figure 7: Parameter Estimates for SARS

Source: World Health Organization and authors’ calculations. The left panel plots the sequence of logistic

parameters, k̂it , ĉit and r̂it , estimated using the information up to each day t on the cumulative reported
cases for Hong Kong displayed in Figure 6. Right panel Figure plots the analogous sequence of exponential
parameters, âit and r̂it , using the same data. Missing estimates indicate lack of convergence (see text).
Circles represent estimates. Solid lines connect estimates.

In Figure 8, we use these parameter estimates to compare predictions for the two models.
Specifically, we use the parameter estimates from day t − 1 to predict the number of cases under
each model for day t, with shading representing the 95 percent confidence interval. As indicated in
the panel, predicted infections under the two models (left axis) are similar through the first week
in April where they diverge for the remainder of the sample period. Interestingly, this divergence
coincides with a stabilization of the estimated inflection point of the logistic curve (right axis),
which, as illustrated by the dashed grey line in the panel, hovers between April 5 and 7 from April
5 onward.15

Given our ability to estimate the logistic model for almost all days of the outbreak, we use
its estimates in the remainder of our analysis in this section.16 Figure 9 reports the predicted

cumulative cases for day t under the logistic model using information as of day t − 1, Ĉt−1
it , and

day t− 2, Ĉt−2
it , as well as the log difference between these predictions, ∆ln(Ĉ−2,−1

it ). We find that

∆ln(Ĉ−2,−1
it ) exhibits wide swings in value during the early stages of the outbreak, before settling

down in late April. As illustrated in Figure A.3, these swings have a noticeably negative correlation
with aggregate stock market performance in Hong Kong, as identified via daily log changes in the
Hang Seng (downloaded from Yahoo Finance).

We explore this relationship formally in an OLS estimation of equation 3. Coefficient estimates
and robust standard errors are reported in Table 1. In the first column, we find a negative and
statistically significant relationship using the raw data displayed in Figure A.3. In column 2,
we account for weekends and holidays by dividing both the left- and right-hand side variables
by the number of days over which the returns are calculated, so that the regression coefficient
represents a daily change in market value for a given log change in predicted cases. Here, too,
the coefficient estimate is negative and statistically significant at conventional levels, and higher in
absolute magnitude.

15The inflection point is given by ln(ĉit)/r̂it.
16At present, we use the last available estimates for non-convergence days.
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Figure 8: Daily Predictions (Ĉt−1
it ) for SARS

Source:World Health Organization and authors’ calculations.
Figure displays the predicted cases for each day t under the
logistic and exponential models using reported cumulative in-
fections as of day t− 1, using the parameter estimates reported
in Figure 7. Solid line tracks reported cases. Shading illus-
trates predictions’ 95 percent confidence intervals. Dashed line
(right scale) traces out the estimated day upon which the lo-
gistic curve’s inflection point (ln(ĉit)/r̂it) is reached. Missing
estimates indicate lack of convergence (see text).

Figure 9: Daily Log Difference in SARS Logistic Predictions, ∆ln(Ĉt−2
it )

Source: World Health Organization and authors’ calculations.
Figure reports the predicted cumulative cases under the logistic
model displayed in Figure 8 for day t using information as of day

t − 1, Ĉt−1
it , and day t − 2, Ĉt−2

it , as well as the log difference

between these predictions, ∆ln(Ĉ−1,−2
it ) and the cumulative re-

ported cases.

In column 3, we examine whether the explanatory power of ∆ln(Ĉ−1,−2
it ) remains after control-

ling for a simple, local proxy of outbreak severity, the difference in cumulative reported infections
between days t − 1 and t − 2, ∆ln(C−1,−0

it ). As indicated in the table, the coefficient of interest
remains negative and statistically significant at conventional levels, though of lower magnitude in
absolute terms. The coefficient for ∆ln(C−1,−0

it ) is also negative and statistically significant.
Finally, in column 4, we repeat the specification for column 3 but include month fixed effects to

account for potential secular movements in the market unrelated to SARS. Esimate are essentially
unchanged.

Overall, the estimates in Table 1 suggests investors may have used simple epidemiological models
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Figure 10: Changes in Predicted SARS Cases (∆Ĉ−2,−1
it ) vs Hang Seng Index Returns

Source: World Health Organization, Yahoo Finance and au-
thors’ calculations. Figure displays the daily log change in the
Hang Seng Index against the daily log change in predicted cases
for day t based on information as of day t− 1 versus day t− 2,

∆ln(Ĉ−2,−1
it ).

Table 1: Changes in Predicted SARS Cases vs Hang Seng Index Returns

(1) (2) (3) (4)
∆Ln(Close) ∆Ln(Close) ∆Ln(Close) ∆Ln(Close)

∆Ln(Ĉ−2,−1) -0.0752∗∗∗ -0.1095∗∗∗ -0.0891∗∗ -0.0923∗

(0.0241) (0.0396) (0.0427) (0.0537)

∆Ln(C−2,−1) -0.0445∗∗ -0.0483
(0.0200) (0.0294)

Constant 0.0018 0.0010 0.0019∗ 0.0025
(0.0013) (0.0011) (0.0011) (0.0051)

Daily Adjustment N Y Y Y
Month FE N N N Y
Observations 70 70 70 70
R2 0.108 0.060 0.103 0.111

Source: World Health Organization,Yahoo Finance and authors’ calcula-
tions. ∆Ln(Closet) is the daily log change (i.e., day t− 1 to day t) closing

values Hang Seng Index. ∆ln(Ĉ−2,−1
it ) is the change in predicted cases for

day t using information from days t− 1 and t− 2. ∆ln(C−1,0
it ) is the change

in actual observed cases between days t − 1 and t. Robust standard errors
in parenthesis. Columns 2-4 divide all variables by the number of days since
the last observation (i.e. over weekends). Column 4 includes month fixed
effects.

to update their beliefs about the economic severity of the outbreak in Hong Kong, in real time.
Coefficient estimates indicate an average decline of 8 to 11 percent in response to a doubling of
predicted cumulative infections.
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4 Application to COVID-19

In this section we provide real-time estimates of the outbreak parameters and infection predic-
tions for COVID-19 in the United States. We then examine the relationship between changes in
these predictions and aggregate equity market returns, as measured by the Wilshire 5000 index
downloaded from Yahoo Finance.17

Data on the cumulative number of COVID-19 cases in the United States as of each day are from
the Johns Hopkins Coronavirus Resource Center.18 The first COVID-19 case appeared in China
in November of 2019, while the first cases in the United States and Italy appeared on January 20,
2020. Our analysis begins on January 22, 2020, the first day that the World Health Organization
began issuing situation reports detailing new case emergence internationally. Appendix Figure A.1
displays the cumulative reported infections in the United States from January 22 through March
27, 2020.

We estimate logistic and exponential parameters (equations 1 and 2) for the United States by

day as discussed in Section 2.1. The daily parameter estimates for the logistic estimation, k̂ti , ĉ
t
i and

r̂ti are displayed the left panel of Figure 11, while those for the exponential model, âti and r̂ti , are
reported in the right panel. Gaps in the time series in either figure represent lack of convergence.

Figure 11: Parameter Estimates for COVID-19

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. The left panel

plots the sequence of logistic parameters, k̂it , ĉit and r̂it , estimated using the cumulative in-
fections in the US up to each day t. Right panel plots the analogous sequence of exponential
parameters, âit and r̂it , using the same data. Missing estimates indicate lack of convergence
(see text). Circles represent estimates. Solid lines connect estimates. Data currently extend to
Friday March 27, 2020.

Logistic parameter estimates for the United States fail to converge after February 23, when
the number of cases jumps abruptly from 15 to 51. That no parameter estimates are available
after this date suggests that growth in new cases observed thus far is inconsistent with a leveling
off, or carrying capacity, at least according to our estimation method. The exponential model, by
contrast, converges for all days. As a result, we focus on the exponential model for the remainder
of our analysis.

As the sharp changes in US exponential model parameters suggest, predicted cumulative infec-
tions vary substantially depending upon the day in which the underlying parameters are estimated.
Figure 12 highlights this variability by comparing predicted cumulative infections based on the
information available as of February 29 and March 7, 13, 21 and 28. The left panel displays these
projections in levels, while the right panel uses a log scale. The five colored lines in the figure trace

17We choose this index for its breadth. Results are qualitatively similar for other US market indexes.
18These data can be downloaded from https://github.com/CSSEGISandData/COVID-19 and visualized at https:

//coronavirus.jhu.edu/map.html.
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out each set of predictions. Dashed lines highlight 95 percent confidence intervals around these
predictions. Finally, the confidence intervals are shaded for all days following the day upon which
the prediction is based. To promote readability, we restrict the figure to the period after February
29. The black, solid line in the figure represents actual reported cases.

Figure 12: Predicted Cumulative Cases Using Different Days’ Estimates (COVID-19)

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. Figure displays
predicted cases for the United States from March 18 onwards using the cumulative reported
cases as of five dates: February 29, March 7, March 13, March 21 and March 28. Dashed lines
represent 95 percent confidence intervals. Confidence intervals are shaded for all days after the
information upon which the predictions are based. Data currently extend to Friday March 27,
2020.

Predicted cumulative infections based on information as of February 29 are strikingly lower
than predictions based on information as of March 21 due to the jump in reported cases between
those days. Indeed, according to the parameter estimates from March 21, US cases would number
close to 300 thousand by the end of March. Equally striking is the downward shift in predicted
cumulative cases that occurs between March 21 and March 28. It is precisely these kinds of changes
in predicted cumulative cases that our analysis seeks to exploit.

Figure 13 uses the logistic parameter estimates in Figure 11 to plot Ĉt−1
it and Ĉt−2

it for the
exponential model, i.e., the predicted number of cases on day t using the information up to day
t− 1 and day t− 2. Magnitudes for these cumulative cases are reported on the left axis. The right

axis reports ∆(Ĉ−2,−1
it ), the log difference in these two predictions. Intuitively, Ĉt−1

it and Ĉt−2
it for

the most part track each other closely. The former rises above the latter on days when reported
cases jump, while the reverse happens when new cases are relatively flat.

Figure 14 plots the daily log change in the Wilshire 5000 index against ∆ln(Ĉ−2,−1
it ). Their

negative relationship indicates that unanticipated increases in cases, i.e., ∆ln(Ĉ−2,−1
it ) > 0, are

associated with declines in aggregate market value, and vice versa. In particular, the approximate
20 percent decline in predicted cases that occurs on March 24 coincides with a greater than 9
percent growth in the market index.

We investigate the relationship displayed in Figure 14 formally by estimating equation 3 via
OLS. For each day, we compute ∆ln (MVit) as the daily log change in either the closing or opening
values of the Wilshire 5000. The estimation period consists of the 47 days from January 22 to
March 27. The unit of observation is one day.

Coefficient estimates as well as robust standard errors are reported in Tables 2 and 3, where the
former focuses on the daily opening-to-opening return and the latter on the daily closing-to-closing
return. Coefficient estimates in the first column of each table indicate that a doubling of predicted
cases using information from day t − 1 versus day t − 2 leads to average declines of -7.0 and -3.8
percent for closing and opening prices respectively. These effects are statistically significant at
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Figure 13: Daily Logistic Predictions (Ĉt−1
it and ∆ln(Ĉ−2,−1

it )) for COVID-19

Source: Source: Johns Hopkins Coronavirus Resource Center and au-
thors’ calculations. Left axis reports the predicted cumulative cases

for day t using information as of day t− 1, Ĉt−1
it , and day t− 2, Ĉt−2

it ,
under the exponential model. Right axis reports the log change in

these two predictions, ∆ln(Ĉ−2,−1
it ). Data currently extend to Friday

March 27, 2020.

Figure 14: Change in Predicted COVID-19 Cases (∆Ĉ−2,−1
it ) vs Aggregate Market Returns

Source: Johns Hopkins Coronavirus Resource Center, Yahoo Finance and authors’ calculations.
Figure displays the daily log change in the Wilshire 5000 index against the log change in pre-
dicted cases under the exponential model for day t based on day t−1 and day t−2 information.
Data currently extend to Friday March 27, 2020.

conventional levels.
In the second and subsequent columns of each table, we adjust the dependent and independent

variables by the number of days since the last trading day. This adjustment insures that changes
which transpire across weekends and holidays, when markets are closed, are not spuriously large
compared to those that take place across successive calendar days. As indicated in the second
column of each table, relationships remain statistically significant at conventional levels and now
have the interpretation of daily growth rates. Here, a doubling of predicted cases per day leads to
average declines of 8.6 percent for closing and 4.8 percent for opening prices.

In column 3 of each table, we examine whether the explanatory power of ∆Ĉ−2,−1
it remains

after controlling for a simple, local proxy of outbreak severity, the most recent change in reported
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Table 2: Changes in Predicted COVID-19 Cases (∆Ĉ−1,−2
it ) vs Market Open Returns

(1) (2) (3) (4) (5) (6)
∆Ln(Open) ∆Ln(Open) ∆Ln(Open) ∆Ln(Open) ∆Ln(Open) ∆Ln(Open)

∆Ln(Ĉ−2,−1) -0.038∗∗∗ -0.048∗∗ -0.057∗∗ -0.057∗∗ -0.060∗∗ -0.054∗∗

(0.014) (0.023) (0.025) (0.025) (0.024) (0.026)

∆Ln(C−2,−1) 0.014 0.015 0.019 0.009
(0.030) (0.029) (0.029) (0.032)

I(∆SIndex) -0.001
(0.023)

∆Ln(SIndex) -0.022
(0.051)

Fiscal Stimulus 0.011
(0.019)

Constant -0.008∗ -0.005 -0.008∗∗ -0.008∗∗ -0.008∗ -0.008∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Observations 41 41 41 41 41 41
R2 0.082 0.075 0.081 0.081 0.096 0.095
Daily Adjustment N Y Y Y Y Y

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. ∆Ln(Opent) and
∆Ln(Closet) are the daily log changes in the opening (i.e., day t− 1 to day t open) and closing values

of the Wilshire 5000. ∆ln(Ĉ−2,−1
it ) is the change in predicted cases. ∆ln(C−2,−1

it ) is the change in
actual observed cases between days t− 2 and t− 1. ∆ln(C−1,0

it ) is the change in actual observed cases
between days t − 1 and t. Robust standard errors in parenthesis. Columns 2-6 divide all variables by
the number of days since the last observation (i.e. over weekends). Data currently extend to Friday
March 27, 2020.

cases. We use a slightly different variable in each table to account for the timing of the opening and
closing returns. For the opening price regressions, we use ∆Ln(C−2,−1) under the assumption that
the only information available to predict the opening price on day t is the difference in reported
cases from days t− 2 and t− 1. For the closing price regressions, however, we use ∆Ln(C−1,0) to
informally allow for the possibility that, although day t cases are not officially available until after
closing, some information might “leak out” during day t trading.

As indicated in the table, these measures are positive but not statistically significant at conven-
tional levels. Moreover, they have little impact on our coefficients of interest. These results suggest
that the primary role local increases in reported cases play in determining market value is through
their contribution to the overall sequence of reported infections, manifest in the estimated model
parameters.

In the final three columns of Tables 2 and 3 we examine the robustness of our results to including
coarse controls for policy. As the COVID-19 pandemic has unfolded in the United States, state and
local governments as well as the federal government have undertaken various measures to control
its spread and limit the economic burden the disease itself imposes. Enactment of such policies is
by definition correlated with the severity of the outbreak, and some of them may be designed to
stabilize equity markets, confounding our results.

We consider two controls for policy. The first is a country-level index developed at Oxford
University, the Government Response Stringency Index (SIndex), which tracks travel restrictions,
trade patterns, school openings, social distancing and other such measures, by country and day.19

19This index can be downloaded from https://www.bsg.ox.ac.uk/research/research-projects/

oxford-covid-19-government-response-tracker.
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Table 3: Change in Predicted COVID-19 Cases (∆Ĉ−2,−1
it ) vs Market Close Returns

(1) (2) (3) (4) (5) (6)
∆Ln(Close) ∆Ln(Close) ∆Ln(Close) ∆Ln(Close) ∆Ln(Close) ∆Ln(Close)

∆Ln(Ĉ−2,−1) -0.070∗∗ -0.086∗∗ -0.096∗∗∗ -0.098∗∗∗ -0.098∗∗∗ -0.096∗∗∗

(0.032) (0.032) (0.034) (0.035) (0.035) (0.033)

∆Ln(C−1,−0) 0.033 0.042 0.039 0.030
(0.031) (0.034) (0.034) (0.033)

I(∆SIndex) -0.016
(0.021)

∆Ln(SIndex) -0.025
(0.056)

Fiscal Stimulus 0.021
(0.015)

Constant -0.007 -0.003 -0.008∗ -0.008∗ -0.008∗ -0.009∗∗

(0.007) (0.005) (0.004) (0.004) (0.004) (0.004)
Observations 41 41 41 41 41 41
R2 0.097 0.105 0.124 0.139 0.132 0.147
Daily Adjustment N Y Y Y Y Y

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. ∆Ln(Opent) and
∆Ln(Closet) are the daily log changes in the opening (i.e., day t− 1 to day t open) and closing values

of the Wilshire 5000. ∆ln(Ĉ−2,−1
it ) is the change in predicted cases for day t using information from

days t− 1 anfd t− 2. ∆ln(C−2,−1
it ) is the change in actual observed cases between days t− 2 and t− 1.

∆ln(C−1,0
it ) is the change in actual observed cases between days t − 1 and t. Robust standard errors

in parenthesis. Columns 2-6 divide all variables by the number of days since the last observation (i.e.
over weekends). Data currently extend to Friday March 27, 2020.

We make use of this index in two ways in columns 4 and 5 of Tables 2 and 3. First, we include
an indicator function I{∆SIndex} which takes a value equal to one if the index changes on day t.
Second, we use log changes in the index itself, ∆Ln(SIndex). As indicated in the tables, neither
covariate is statistically significant at conventional levels, and their inclusion has little impact on
the coefficient of interest.

Our second control for policy is a coarse measure of fiscal stimulus. This dummy variable is
set to one for four days (chosen by the authors) upon which major fiscal policies were enacted.
The “Coronavirus Preparedness and Response Supplemental Appropriations Act, 2020”, which
appropriated 8.3 billion dollars for preparations for the COVID-19 outbreak, was signed into law
on March 6. Then, from March 25 to March 27, Congress voted for and the President signed into
law the 2 trillion dollar “Coronavirus Aid, Relief, and Economic Security Act.” As reported in the
table, this dummy variable, too, is statistically insignificant at conventional levels, and exerts no
influence on the coefficient of interest.

Policy variables’ lack of statistical significance is somewhat puzzling. One explanation for this
outcome is that these measures are a function of the information contained in the cumulative
reported cases, and therefore retain no independent explanatory power. On the other hand, the
various government policies included in the SIndex may have offsetting effects. For example, while
social distancing measures might be interpreted by the market as a force that reduces the economic
severity of the crisis, they may also be taken as a signal that the crisis is worse than publicly
available data suggest. At present, we do not have the degrees of freedom to explore the impact of
individual elements of the this index, but plan to do so in a future draft when inclusion of additional
countries in the analysis allows for panel estimation.
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5 Conclusion

This paper shows that day-to-day changes in the predictions of standard models of infectious disease
forecast changes in aggregate stock returns in Hong Kong during the SARS outbreak and the United
States during the COVID-19 pandemic. In future updates to this paper, we plan to extend the
analysis to other countries and pandemics, and to investigate the link between individual firms’
returns and their exposure to public health crises via domestic and international input and output
linkages as well as the demographics and occupations of their labor forces.
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Figure A.1: Actual COVID-19 Cases, By Country

Source: Johns Hopkins Coronavirus Resource Center and authors’ calculations. Figure displays
the COVID-19 up to March 28.

Figure A.2: SARS Infections in China and Worldwide During 2003

Source: World Health Organization and authors’ calculations. Figure
displays the cumulative reported SARS infections in China and the
rest of the world from January 1, 2003 to July 11, 2003.
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Figure A.3: Changes in Predicted SARS Cases vs HSI Index

Source: Johns Hopkins Coronavirus Resource Center, Yahoo
Finance and authors’ calculations. Figure displays the daily
log change in the Hang Seng Index against the log change in
projected cases for day t based on day t − 1 and day t − 2
information.
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